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Chapter 1

The general picture

One thing that has always to be clear is the conceptual separation between lattice quantities
and impurity quantities. In methods relating DMFT with other ab-initio techniques, we
usually work with two Green’s functions, the lattice Green’s function G, which may be
written in different basis and split in different components, but which is always related to
the lattice framework, i.e. the real material. And the impurity Green’s function G which is
the Green’s function of an Anderson impurity model which serves as model system to solve
exactly a small part of the lattice problem. A Similar distinction has to be taken in mind
also for the self-energy (exchange and correlation) and for the Hartree potential.

The lattice model (DFT or GW) describes the physics of the real material. Projected or
downfolded quantities are still belonging to the lattice model: they are just a local part of the
full system. Even though projected, they should not be confused with quantities belonging
to the impurity model. This is merely a DMFT concept and does not know anything about
the lattice. They are two different worlds.

These two worlds are linked by the assumption, which is the basic assumption of DMFT,
that Σimp ≡ Σloc. Note that loc will always label local lattice quantities, imp are impurity
model quantities. Let us stress again this point: here the assumption is that there’s no
difference between the local part of the lattice self-energy and the self-energy of the impu-
rity model. The point is now how to map the local part of the lattice problem onto the
impurity model. This work is made by the hybridization function ∆(ω). From the impurity
perspective, it accounts for the coupling between the bath and the impurity. From the lattice
perspective, it condenses the properties of the non local part of the lattice, bridging the two
frameworks.

Together with the hybridization function, another important quantity that allows the
mapping is the in-site effective interaction U , the Hubbard interaction which in principle
can account for the renormalization of the Coulomb interaction when passing from the full
lattice to the local physics. This interaction is often approximated.

Once the mapping is done, it is possible to solve the impurity model exactly through
Monte Carlo methods, so that the local part of Σlatt (equivalent to Σimp by hypothesis) can
be computed in a more accurate way. One is happy with the method once the loop is closed,
leading to the fulfilment of the self-consistency criterion Gloc = G.
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Chapter 2

Detailed algorithm in QSGW+DMFT

2.1 The projector

Part of Paolo’s work has been to construct the projector PLL′τ
kij = ULτ

ki U
L′τ†
kj . The global index

L = l,m accounts for the orbital character and it takes values only for l in the coordinated
subset, τ label the MT sphere. k, i and j are usual momentum and band index in lattice
space. This projector, constructed following Haule’s prescriptions, assures causal DMFT
equations (strictly negative Im[Σ]) and conserves the spectral weight of the spectral function
of electrons in the correlated subset.

This does not mean, however, that other approaches, based on Wannier functions for
instance, violate causality. In fact in the Wannier method the projector is by construction
separable. What Rutgers’ people criticise in this approaches is a less accurate treatment (or
even a lost of accuracy) in the kinetic part and a less precise localization of the local quan-
tities, which makes the use of the Anderson impurity model somewhat more questionable.

The projection operation maps the full lattice Gkij(ω) onto the local Green’s function
according to

GLL′τ (iω) =
∑

k,ij

ULτ†
ki Gkij(iω)UL′τ

kj

=
∑

k,ij

ULτ†
ki

[
iω + µ− ε0

k

]−1

ij
UL′τ
kj , (2.1)

where the matrix ε0
knn′ = 〈n,k|H0(r, r′)|n′,k〉 is the matrix element of the quasi-particle

Hamiltonian H0(r, r′), which is static and hermitian. As such, it can be split into Hartree
and XC-contributions1 ε0

knn′ = εHknn′ + Σ0
knn′ . Note that for the moment we haven’t chosen

any specific basis set.
The inverse application of the projector is the “embedding” procedure, which allows one

to write the local self-energy in the lattice basis. As stated above, the basic assumption of
DMFT is that the local self-energy equates the impurity self-energy, that is

εH loc
ijk + Σloc

kij(ω) =
∑

τ,LL′

ULτ
ki Σimp

LL′τ (ω)UL′τ†
kj . (2.2)

One has to be careful on a few aspects here. First of all, in the expression above we
explicitly split the Hartree contribution from the XC-contribution in the lattice part (left

1For the definition of Σ0 in this context, see text below (in particular, equations (2.7), (2.8) and (2.28)).

5



hand side). However we included the Hartree contribution in the definition of Σimp (right
hand side). Although actually confusing, this is notation is somewhat in line with conven-
tions adopted in the GW (left hand side) and DMFT (right hand side) communities. Sec-
ond, the embedded Σkij(ω) corresponds to the local part of the fully dynamical self-energy
(Hartree+XC), including vertex corrections. Hence it can not be plugged into the static
QSGW self-energy as it is. Note in fact that in the left hand side, we explicitly write energy
dependence on the XC self-energy. This issue can be crucial in determining the strategy to
tackle the double counting problem.

Through the embedding procedure, the lattice XC self-energy is corrected to account for
the local diagrams computed by the impurity solver. The resulting (full lattice) corrected
self-energy is the new Σ0.

It is important to realize that the projection and embedding do not correspond to mere
change of representation because the indexes LL′ take value ONLY in the correlated subset
(the space is not complete) Therefore, the combined operation of embedding and then pro-
jecting is the identity (as the starting point is a local quantity), while this is in general not
true in the case of projecting and then embedding.

Making use of the projection and embedding procedure, one can write down the self-
consistency condition GLL′τ (iω) = GLL′τ (iω)

∑

k,ij

ULτ†
ki

[
iω + µ− εHk − Σ0

k

]−1

ij
UL′τ
kj =

=
[
iω − Eimp

τ − Σimp
τ (ω)−∆τ (ω)

]−1

LL′ .

(2.3)

This relation translates in formulae the requirement that the local lattice Green’s function,
obtained by a projection of the full Green’s function in the local space, must coincide with the
impurity Green’s function G−1

LL′τ (iω). The latter can be written as a bare impurity propagator
G0LL′τ (iω) = [iω − Eimp

τ −∆τ (ω)]−1
LL′ plus the impurity self-energy Σimp

LL′τ (ω).

2.2 The QSGW+DMFT algorithm step by step

In my mind the QSGW+DMFT algorithm can be summarised in the complicated flowchart
of Figure 2.1. Not all steps are completely clear, and these notes have to be read as a work
in progress to clarify all points. And of course, approximations can be devised to skip or
fasten specific passages.

I conceptually divided the steps of the program in three groups, the QSGW steps (in
blue) leading to the optimised non-local static hamiltonian describing the lattice problem.
The DMFT steps (in red), concerning the mapping of the lattice problem onto the impurity
model, its solution and the embedding of the impurity solution inside the lattice problem.
Within the DMFT steps, the cRPA procedure (black section) accounts for the ab-initio
determination of the in-site interaction U and its locally screened value.

The distinction in autonomous loops is not as clear as in the DFT+DMFT scheme because
of the fact that the GW and the DMFT schemes are formally closer, so loops are in this
context merged together to a higher degree.

1) Static (non-local) Hamiltonian: The algorithm starts from the definition of a static
non-local hamiltonian H0

ijk = 〈ik|H0(r, r′)|jk〉 which can be diagonalized exactly giv-
ing eigenvalues ε0

ik and eigenfunctions ψ0
ik. This hamiltonian can come from DFT (first

guess) or it can be obtained from a full QSGW calculation.

6



Σ0
ijk = 1

2Re
[
Σlatt

ijk (ε0
ik) + Σlatt

ijk (ε0
jk)
]

ΣDC
LL′(ω) = i

∫
GLL′(ω − ω′)W loc

LLL′L′(ω′)dω′

εH DC
LL′ = −iδLL′

∑
L1

∫
GL1L1

(ω)ULL1L1L′dω

Σ̄LL′(ω) = Σimp
LL′ (ω) −

(
ΣDC

LL′(ω) + εH DC
LL′

)

χloc(r, r′, t) = −iGloc(r, r′, t)Gloc(r, r′,−t)

∆LL′(ω) = iω − Eimp
LL′ − Σimp

LL′ (ω) − G−1
LL′(ω)

Eimp
LL′ = P iik

LL′ε0
ik − µδLL′ − Σimp

LL′ (∞)

Gijk(iω) =
(
iω + µ − ε0

k

)−1

ij

εH
ijk =

〈
ik

∣∣∣∣
∫

ρ(r′)
|r − r′|dr

′
∣∣∣∣ jk
〉

UL1L2L3L4 = W r
L1L2L3L4

(ω = 0)

W loc(ω) = [1 − χloc(ω)U ]−1U

Σimp
LL′ (ω) = Σ̃imp

LL′ (ω) + Σimp
LL′ (∞)

χ(r, r′, τ) ; W (r, r′, τ)

H0
ijk ; {ε0

ik,ψ0
ik(r)}

µ and check charge neutrality

GLL′(ω) = P̂ ijk
LL′Gijk(ω)

CTQMC 

χr = χ− χloc ; W r(r, r′, τ)

Σlatt
ijk (ω) = ΣGW

ijk (ω) + ÊLL′
ijk Σ̄LL′(ω)

ρ(r) =
∑

ik

|ψ0
ik(r)|2

Figure 2.1: The QSGW+DMFT algorithm in its principal steps. The blue steps belong to the proper
QSGW loop. Red steps concern the DMFT loop within which the black steps belong to the cRPA procedure.
Sum is performed over repeated indexes in all formulas.
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2) Chemical Potential: From the collection of ε0
ik, one computes the chemical potential,

and places correctly the Fermi energy. How this is done is mostly a technical issue,
but it is a crucial step because one needs the system to be neutral in every step of the
calculation.

Apparently [Haule, arxiv 2010] a good determination of µ is liable to delicate numerical
instabilities that can be cured with
i) a plasmon-pole approximation for the self-energy and
ii) by subtracting and adding a fake Green’s function in order to integrate numerically
a smoother function on the imaginary axis.

This step becomes more important beyond the first iteration, where a distinction can
be made between local and full Green’s function. Then, our strategy will be probably
that of adjusting the chemical potential of the local Green’s function in order to match
the one of the full lattice problem. Implementation details have to be clarified.

If one is happy with the lattice part, it is possible to exit here the QSGW loop (blue
section in Figure 2.1) and enter the complicated DMFT loop (jump to step 9).

3) Density: The density ρ(r) of the full system is computed from the eigenfunctions ψ0
ik(r)

according to

ρ(r) =
∑

ik

∣∣ψ0
ik(r)

∣∣2

This is a lattice quantity, so it is not updated within the DMFT loop.

4) Hartree potential: From the density one computes the Hartree energy,

εHijk =

〈
ik

∣∣∣∣
∫

ρ(r′)

|r− r′|dr
′
∣∣∣∣ jk
〉
. (2.4)

5) Response functions: Assuming the random phase approximation (RPA), one com-
putes the irreducible Polarizability χ and the screened Coulomb interaction W for the
lattice:

χ(r, r′, t) = −iG(r, r′, t)G(r′, r,−t) and (2.5)

W (r, r′, t) =

∫ (
δ(r− r1)−

∫
χ(r2, r1, t)

|r− r2|
dr2

)−1
1

|r1 − r′|dr1 . (2.6)

Actually, the polarizability χ is most likely computed in RPA as a sum over transitions,
so relying on ε0

ik and ψ0
ik(r).

The two equations above can be performed in any basis or representation and there
is no fundamental reason to prefer real space and imaginary time for doing that. As
far as I understood, the way actually Sangkook performs this calculation is by Fourier
transforming all quantities in real space and imaginary time.

6) Lattice dynamical self-energy: The dynamical self-energy of the lattice

Σlatt
ijk (ω) = ΣGW

ijk (ω) +
∑

LL′τ

U ik
Lτ Σ̄LL′τ (ω)U jk†

L′τ (2.7)
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is computed in the GW scheme but it is corrected by the addition of Σ̄. The latter term
accounts for all diagrams beyond GW for the local correlated subset. This correction
comes from the output of the previous DMFT calculation, so it is initialised to zero
when first iterations of the QSGW algorithm are performed.

7) Lattice static self-energy: Once the full-lattice dynamical self-energy is obtained,
one optimizes the independent-particle problem by quasiparticlizing the self-energy

Σ0
ijk =

1

2
Re
[
Σlatt
ijk (ε0

ik) + Σlatt
ijk (ε0

jk)
]
. (2.8)

This is not the only way to pass from a dynamical non-hermitian self-energy to a static
hermitian one, however is our method of choice.

Sangkook follows a different method, relying on a linearisation of the self-energy around
ω = 0 but neglecting the normalization factor Z = 1/(1 − ∂Σ

∂ω
) in the weight of the

quasiparticle Green’s function. That is just a matter of taste, however when taking
static approximations (e.g., for the double counting term), one has to be careful in
making coherent choices.

8) Close the QSGW loop: After the quasiparticlization of the lattice self-energy, the
QSGW loop can be closed by reconstructing the static hermitian non-local Hamiltonian
H0
ijk and hence returning to step 1). The new Hamiltonian has an updated Hartree

potential and self-energy. Steps from 1) to 8) can be performed independently from
the DMFT part, so they can be repeated until convergence for fixed values (possibly
null) of Σ̄LL′τ (ω). Otherwise said, the QSGW loop updates only lattice quantities.

Before quitting the QSGW loop, it might be a good idea to recompute µ or at least to
check the charge neutrality of the system. That is why the QSGW loop is quitted at
step 2), after the recalculation of the new H0

ijk.

9) Lattice Green’s function: The starting point for beginning the DMFT loop is the
calculation of the lattice Green’s function. The lattice Green’s function in imaginary
frequency axis reads

Gijk(iω) =
(
iω + µ− ε0

k

)−1

ij
=
(
iω + µ− εHk − Σ0

k

)−1

ij
(2.9)

constructed by diagonalization of H0
ijk (step 1), and the updated value of the chemical

potential µ (step 2).

10) Local Green’s function: By means of the projection operation, the local lattice
Green’s function is obtained

GLL′τ (ω) =
∑

ijk

U ik†
Lτ Gijk(ω)U jk

L′τ . (2.10)

11) Impurity level: From the high-energy expansion of the self-consistent condition (2.3),
one gets the expression for the impurity level

Eimp
LL′τ =

∑

ik

U ik†
Lτ ε

0
ikU

ik
L′τ − µδLL′ − Σimp

LL′τ (∞) . (2.11)
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See chapter 5 for a derivation of the definition of the impurity level.

If it is the first DMFT iteration after a QSGW loop , Σimp
LL′τ (∞) should be initialised

to zero.

12) Hybridization function: The construction of the hybridization function is justified
by the self-consistent condition (2.3). Combining expressions (2.11) and (2.10) together
with results from previous DMFT calculations, one computes

∆LL′τ (ω) = iω − Eimp
LL′τ − Σimp

LL′τ (ω)−G−1
LL′τ (ω) . (2.12)

This quantity represents the coupling between the impurity and the bath. It is through
the hybridization function that the mapping from the local Green’s function onto the
Weiss field of the Anderson impurity model is actually performed.

To construct it, one uses ingredients coming from steps 10) and 11) and from previous
DMFT calculations (step 18).

13) Local polarizability: We leave for a moment the DMFT loop (red path) to enter
in the black section of Figure 2.1. This is the cRPA procedure, a set of definitions
of other quantities required to solve the impurity problem by ab-initio methods, and
to compute double counting contributions. In steps from 13) to 15) we will compute
the (static) Hubbard interaction U τ

L1L2L3L4
. In step 16) we will compute the locally

screened Hubbard interaction W loc
L1L2L3L4

(ω).

In this step 13) one constructs the local polarizability (local bubble diagrams)

χloc(r, r′, t) = −iGloc(r, r′, t)Gloc(r, r′,−t) , (2.13)

with

Gloc(r, r′, t) =
∑

LL′τ

∫
FωLLL′L′τ [GLL′τ (ω)](r, r′, t)dω (2.14)

by means of the local Green’s function (2.9) transformed in real space and imaginary
time by the operator FωLLL′L′τ [·](r, r′, t) which performs a change of representation
(from LL′ to r, r′) and a Fourier transformation. Of course this operator can be split
into the two distinct operations, but this is not relevant here.

As in expression (2.5), I report the polarizability in real space and imaginary time.
Sangkook told me he computes them in real space and imaginary time, although there
is no reason of principle to prefer this representation.

14) Effective interaction from the lattice: Within the constrained RPA framework,
the polarizability of the rest of the system is obtained by combining (2.5) and (2.13)

χr(r, r′, t) = χ(r, r′, t)− χloc(r, r′, t) , (2.15)

from which one gets the screened Coulomb interaction of the uncorrelated part of the
lattice as

W r(r, r′, t) =

∫ (
δ(r− r1)−

∫
χr(r2, r1, t)

|r− r2|
dr2

)−1
1

|r1 − r′|dr1 . (2.16)
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One has to stress here that the basis where these quantities have to be computed is
arbitrary, but because of equation (2.15), one needs to use the same representation for
χ and χloc. As the {LL′τ} basis is reserved for local quantities, it looks inappropriate
for χ. Similarly, the local polarizability χloc may not be well represented in the {ijk}
basis. Real space and imaginary time offer the advantage that can be a common
framework for both quantities.

I’m not aware of technical difficulties that this framework would imply, as Sangkook
was not clear on this point. However it seems a reasonable choice.

15) Hubbard interaction: To construct the local effective interaction U τ
L1L2L3L4

(ω) one
just needs to back-transform expression (2.16) to the localised basis

U τ
L1L2L3L4

(ω) =

∫
Fω −1
L1L2L3L4τ

[W r(r, r′, t)]drdr′dt (2.17)

A possible, and very common approximation is to take the limit for ω → 0 of the
expression above, hence assuming a static in-site interaction U . This is done, for
example, in Rutgers’ group.

Although in principle not compulsory, this approximation is assumed in most of the
cases because of technical problems. In fact, one needs special quantum Monte Carlo
solvers to deal with dynamical Hubbard interactions, and our solver does not do the
job. Kristjan is very reluctant to implement the methods required to handle dynamical
interactions. In his opinion, the possible advantages do not worth the effort to gain
them.

We recently learnt from Sasha Lichtenstein that apparently the Anderson impurity
model can be solved including all diagrams (for instance including spin-flip) only for
static Us. Even though there are solvers able to handle dynamical Us (triqs library),
not all diagrams are included in the impurity self-energy.

Assuming the static approximation, I will just omit the frequency (or time) variable

U τ
L1L2L3L4

= W r
L1L2L3L4τ

(ω = 0) =

∫
F0 −1
L1L2L3L4τ

[W r(r, r′, t)]drdr′dt . (2.18)

16) Locally screened Hubbard: The effective interaction (2.18) acting on the electrons
of the correlated subset is screened by the local polarizability (2.13) with RPA bubbles

W loc
LL′τ (ω) =

∑

L1

(
1− χlocτ (ω)Uτ

)−1

LL1
U τ
L1L′ . (2.19)

The expression above is evaluated by Sangkook in local coordinates as I report it here.
In principle all quantities above are 4-point matrices, however, because of the RPA,
one can contract two indexes from the beginning, before solving the equations. The
notation above and the following expressions will assume implicitly such contraction,
so they are reported in the 2-point matrix form.

In the condensed expression above, 1 = δL2,L3 , and χlocτ (ω)Uτ is a dynamical matrix
expression of the kind

[
χlocτ (ω)Uτ

]
L2L3

=
∑

L4

χlocL2L4τ
(ω)U τ

L4L3
(2.20)
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where the 4-point polarizability is obtained from (2.13) by back-transforming to the
local basis:

χlocL2L4τ
(ω) =

∫
Fω −1
L2L2L4L4τ

[χloc(r, r′, t)]drdr′dt . (2.21)

All expressions above can be generalised for a dynamical Hubbard interaction. One
can chose to keep time variables and perform simple products in time, or one can work
in the imaginary frequency domain. In this case, a δ(ω) has to be inserted into the
definition of 1 and convolution products in frequency have to be evaluated in (2.20)
and (2.19).

As far as I understood, Sangkook does follow all these steps from 13) to 16), at least
at the beginning of the calculation. I think that there are other approximate ways to
compute U (based on estimation of the Slater integrals F 0, F 2, F 4 and F 6), but I had
not looked into the literature yet.

A final remark on the cRPA procedure. The whole black block should probably be
done when entering the DMFT loop immediately after the QSGW, but most likely one
can skip this part for every repeated iteration inside the DMFT loop.

17) The Solver: We now go back to the DMFT loop and continue from where we left
it at step 12. With the (static) Hubbard interaction (2.18) and the hybridization
function (2.12), one has the ingredients needed to solve the impurity problem in the
Continuous Time Quantum Monte Carlo solver.

18) Impurity self-energy: The main output of the impurity solver is the impurity self-
energy

Σimp
LL′τ (ω) = Σ̃imp

LL′τ (ω) + Σimp
LL′τ (∞) . (2.22)

There is no fundamental reason to split between dynamical self-energy Σ̃imp and high
energy tail Σimp(ω = ∞). However, it turns out to be very important for numerical
stability to have accurate high-energy behaviour of the impurity self-energy, and also
because it enters in the definition of the impurity level (2.11) and the hybridization
function (2.12) As CTQMC is very noisy at high energy, interpolation schemes (splines)
have to be used at this point to improve on the high-energy result of the solver. As
far as I understood, for the high energy part Bismayan uses another solver, called
“Hubbard 1”, which is constructed to give a correct asymptotic result. Successively
he merges the result of the two solvers by means of an interpolation scheme. This is
essentially a technical issue, but disregarding a good high-energy behaviour may cause
severe errors.

The asymptotic limit of the impurity self-energy is expected to be the Hartree-Fock
contribution, as they are the only static diagrams. So one can either use interpolation
schemes or compute Hartree-Fock contributions using the local Green’s function and
the Hubbard interaction

Σimp
LL′τ (∞) = i

∫
G(ω)LL′τU

τ
LLL′L′dω − iδLL′

∑

L1

∫
GL1L1τ (ω)U τ

LL1L1L′dω
(2.23)
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Let us stress here, that in case of a dynamical U(ω) is used, both Hartree and Fock
diagrams will become energy-dependent and should both be split into high energy tail
and dynamical part.

19) Double-counting terms: Following the paper of Tomczak and Mark, one wants to
retain all the work done by the QSGW loop, and add only local diagrams beyond GW.
So one has to subtract local GW diagrams and the local Hartree contribution from
Σimp
LL′τ (ω). This consideration leads to the two double-counting terms

ΣDC
LL′τ (ω) = i

∫
GLL′τ (ω − ω′)W loc

LLL′L′τ (ω
′)dω′ = ΣDC

LL′τ (∞) + Σ̃DC
LL′τ (ω) (2.24)

εHDC
LL′τ = −iδLL′

∑

L1

∫
GL1L1τ (ω)U τ

LL1L1L′dω (2.25)

By definition the two terms of expression (2.23) correspond to ΣDC
LL′τ (∞) and εHDC

LL′τ .
The right hand side of equation (2.24) explicitly divides the static exchange term from
the dynamical correlation term. Such a splitting can be easily put in evidence by
rewriting W loc = U + UχU(1− χU)−1 = W̃ loc (cfr. with equation (2.22)).

This is actually NOT what Sangkook is doing because he has static double-counting
terms, even for the XC-contribution. He told me he sets ω = 0 in equation (2.24), hence
doing an approximation that apparently makes no sense. Actually this is equivalent
to take static value ΣDC(ω = 0), which is the order zero of the linearization of the
self-energy he uses to construct the QSGW self-energy. So it is somewhat coherent
with his quasiparticlization of the self-energy, but for us it would not be justified.

An alternative way to compute the double-counting self-energy, which would prevent
one from passing through part of the cRPA steps, is

ΣDC
LL′τ (ω) = i

∫
GLL′τ (ω − ω′)WLLL′L′τ (ω

′)dω′ (2.26)

εHDC
LL′τ = −iδLL′

∑

L1

∫
GL1L1τ (ω)U τ

LL1L1L′dω (2.27)

where W is the full screened Coulomb interaction.

This choice can be justified by considering that, if U(ω) were taken, then W loc ≡ W .
This writing is actually inconsistent in the fact that the Hartree term is still computed
with a static U . In any case, this could be a way to proceed in order to have quickly
some result. The method of choice, for me, is still that of equations (2.24) and (2.25).

20) Corrected local self-energy and Hartree: By subtracting both double-counting
terms (2.24) and (2.25) (or alternatively (2.26) and (2.27)) from the impurity self-
energy (2.22), one retains only the local diagrams beyond the GW approximation.
This is the local correction to the lattice self-energy

Σ̄LL′τ (ω) = Σimp
LL′τ (ω)−

(
ΣDC
LL′τ (ω) + εHDC

LL′τ

)
(2.28)

that has to be plugged into the lattice self-energy by means of the embedding procedure
in expression (2.7). This correcting term includes only the local diagrams beyond the
GWA.
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Contextually, note that the local Hartree diagram corresponds exactly to the Hartree
double counting, so no correction to the Hartree potential is needed. In practice one
assumes that GW works already well for this diagram.

21) Closing the DMFT loop: To fully close the DMFT loop one has to repeat some
steps of the QSGW loop. More precisely, with the new lattice self-energy (2.7) (step 6)
one gets the new static self-energy (2.8) (step 7) that now embodies a better description
of the local subset. So the new Hamiltonian can be diagonalised (step 1) and the new
chemical potential µ (step 2) can be correctly located. Hence, the DMFT loop can
be started again from its beginning (step 9) with a lattice Green’s function with an
enhanced impurity part.
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Chapter 3

“Double-loop” or “1-shot DMFT”
scheme

Yesterday me and Paolo discussed about what should be our next steps to conclude some
first calculation on the QSGW+DMFT scheme. Here I try to set the main points and the
strategy we would follow. I do it also in order to suggest a division of tasks.

Of course, all the steps outlined in my previous notes can not be done in a short time,
so we need to look for some reasonable shortcut. The strategy could be then to do QSGW
up to convergence, to use the converged lattice data to initialize the DMFT calculation and
after convergence of the DMFT loop, to merge the two results. This double-loop strategy is
depicted in Figure 3.1. It differs in some aspects with respect to the method devised in my
previous notes, in particular in the update of the local Green’s function. This point will be
developed further below.

The QSGW loop (the blue part) is performed by LM. It passes through the construction
and diagonalization of a static non-local hermitian Hamiltonian, the construction of the
Hartree term and the GW self-energy and the construction of the QSGW static self-energy
which is static and hermitian. With the latter effective field, the new Hamiltonian is obtained
and the loop can be iterated until convergence of a required quantity or group of quantities.

The DMFT loop (the red part) is composed by five blocks. The first block is the calcu-
lation (and update) of the local Green’s function and the impurity level Eimp

LL′ using lattice

r

GLL′(ω) =
∑

ijk

U ik†
L


G−1

ijk(ω) −
∑

L1L′
1

U ik
L1

(
Σimp

L1L′
1
(ω) − ΣDC

L1L′
1
(ω) − εH DC

L1L′
1

)
U jk†

L′
1



−1

U jk
L′ and Eimp

LL′

HQSGW
ijk ψjk = εQSGW

ik ψik

ΣGW
ijk (ω)

ΣQSGW
ijk =

1

2
Re
[
ΣGW

ijk (εQSGW
iik ) + ΣGW

ijk (εQSGW
jjk )

]

CTQMC 

Σimp
LL′ (ω)

ΣDC
LL′

QSGW loop 

DMFT loop 

∆LL′(ω)

U 

cRPA procedures 

Figure 3.1: Scheme of the double loop strategy.
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quantities coming from the QSGW loop and impurity quantities computed within the DMFT
loop. The second step is the calculation of the hybridization function ∆LL′(ω). Together
with the Hubbard interaction U , the hybridization function is fed into the CTQMC solver
(third block) which returns the impurity self-energy (fourth block). In the fifth block local
quantities (GLL′(ω) and U) are used to construct the double counting term. Different ways
to do so will be discussed below. Finally, using all the impurity quantities the updating
block (the first DMFT block) is repeated and a new iteration started.

Updating Eimp
LL′

Within this double loop scheme, Eimp
LL′ is defined as

Eimp
LL′ =

∑

ik

U ik†
L′ ε

QSGW
ik U ik

L′ − ΣDC
LL′(∞)− εHDC

LL′ − µδLL′ . (3.1)

While the QSGW eigenstates εQSGWik are not updated because we are outside the QSGW
loop, it is important to update the chemical potential. The strategy to do that is requiring
that the updated local Green’s function has the same chemical potential as the QSGW
Green’s function.

Finally, one also includes the double counting terms at infinite energy. In principle
they should be updated at each iteration of the DMFT scheme because they rely on local
properties, however as a first approximation one can take initial values and keep them in
every iteration. How they are computed is a complex problem that I’ll address later.

TASK: Mark, you said that you have a clear idea about how to implement the adjustment
of µ. Can you do that? Do you want us to make this? In this case I think that me and
Paolo we have to discuss little more with you, possibly in front of the source code, to
understand where to put our hands.

Updating GLL′(ω), id est update of the self-energy

This is a delicate point. One constructs the local Green’s function from the projection of the
updated total Green’s function. The latter includes the lattice self-energy plus corrections
coming from the impurity model minus double counting terms. Currently we all agree that
corrections should enter in the GW step of the QSGW loop, as depicted in my previous
notes.

However, going this way would require major modifications to the code, so a different
strategy is devised for the double loop procedure, closer in spirit to what me and Paolo
discussed in Rutgers. In this procedure, the QSGW eigenvalues are not evaluated again so
the updated Green’s function Gu reads

Gijk(ω) =
([
iω + µ− εQSGWik

]
δij − Σ̄ijk(ω)

)−1

=

(
G−1
ik (ω)δij −

∑

LL′

U ik
L

[
Σimp
LL′ (ω)− εHDC

LL′ − ΣDC
LL′(ω)

]
U jk†
L′

)−1

, (3.2)

where the definition of the correcting self-energy

Σ̄ijk(ω) =
∑

LL′

U ik
L

[
Σimp
LL′ (ω)− εHDC

LL′ − ΣDC
LL′(ω)

]
U jk†
L′ (3.3)
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has been introduced.
In expression (3.2), the lhs is the new total Green’s function, while G−1

ik appearing on the
rhs is the old one.

QUESTION: The Σimp
LL′ (ω) provided by CTQMC is written on Matsubara frequencies, so

either we write the DC term in the same frequencies, or we perform analytic contin-
uation of Σimp

LL′ (ω). Everything has to be written in the same framework. In which
framework does LM work? How Matsubara’s Σimp

LL′ (ω) is handled at the moment?

TASK: The calculation of the correcting self-energy is currently handled by Paolo who is
following this scheme. This procedure has to be improved though. I think that me and
Paolo we could coordinate our work to improve on the way the DC terms are computed.
See below.

The double counting terms ΣDC
LL′(ω) and εH DC

LL′

How to compute the double counting term is a delicate issue and many approximations are
possible. Here there’s a series of (more or less) justifiable approximations for the double-
counting terms.

• A first very crude approximation is εHDC
LL′ = U(n − 1/2)δLL′ and ΣDC

LL′(ω) = 0, where
U is the Hubbard interaction and n is the density of the correlated subsystem. Both
are read from an external file. This is basically what the code does right now.

This is essentially an approximated Hartree term of the correlated subsystem, hence
it is a static double counting term. However, it is justifiable because this is what is
currently done in DFT, so it could be a good starting point. Some improvement can
be achieved adding a Fock term like ΣDC

LL′ = δLL′J(n/2 − 1/2) or by computing nLL′

from GLL′(ω).

• A step further can be done by trying to remove from the QSGW self-energy its local
part. The double counting terms hence result

ΣDC
LL′ =

∑

ijk

U ik
L ΣQSGW

ijk U jk†
L′ and εHDC

LL′ =
∑

ijk

U ik
L ε

H
ijkU

jk†
L′ (3.4)

This method, although more sensible than the previous one, is still not rigorous. One of
its main flaws is that one loses all the advantages of working in the MBPT framework
as static quantities can not be expanded in diagrams. If I remember well, Kristjan
already commented this approach, right?

Both the methods above give static double counting corrections.

TASK: I think that Paolo should focus on performing these two static approximations
methods within the double-loop procedure before moving to new tasks. Could the com-
parison of these two methods applied to a real material be an interesting result?

When dynamical DC terms are considered, the correct way to include them is not as
formulated in the double loop strategy, but rather as displayed in the general approach,
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that is including Σ̄LL′(ω) at the level of GW, and not after the quasiparticlization of the
self-energy. One interesting thing would be the comparison of the two schemes (the general
one and the double-loop one) with dynamical DC terms. This would require a much deeper
merging of the DMFT and the QSGW loop.

Some ways to construct dynamical double counting terms might be the following.

• Using the local Green’s function and U one can compute the local Hartree diagram

εHDC
LL′ = −iδLL′

∑

L1

∫
GL1L1(ω)ULL1L1L′dω (3.5)

and the GW-like local diagrams

ΣDC
LL′(ω) = i

∫
GLL′(ω − ω′)WLLL′L′(ω′)dω′ (3.6)

The way one justifies this is that if U were actually the dynamical U(ω) = Wr(ω)
as prescribed by constrained RPA, then expression (3.6) would be exact. However
the approach is not coherent because the Hartree and the XC terms are not treated
on the same footing since the former uses a static U , the latter implicitly assumes
U(ω) = Wr(ω).

• We agree that the most rigorous way to compute double counting terms (within the
static U approximation) is what I wrote in my previous notes

εHDC
LL′ = −iδLL′

∑

L1

∫
GL1L1(ω)ULL1L1L′dω (3.7)

ΣDC
LL′(ω) = i

∫
GLL′(ω − ω′)W loc

LLL′L′(ω′)dω′ (3.8)

with W loc = (1 − Uχloc)−1U . To compute W loc
LLL′L′(ω) one has to implement the full

cRPA scheme, which would actually allow to compute ULLL′L′ ab-initio in a more
correct way.

TASK: I would focus on this dynamical DC correction part, starting from the first method,
most likely implemented in the double-loop way. Then either I focus on the cRPA part
in order to complete also the second method or I work on the inclusion of dynamical
effects in the more general framework (correction of GW self-energy).
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Chapter 4

Projection, Embedding and
Normalization

4.1 Definitions of projection and embedding

Projection The projector we use acts as follows when applied to a generic matrix Aijk

ALL′ =
1

N

∑

ijk

U ik†
L AijkU

jk
L′ . (4.1)

Here the band indexes i and j run inside the energy window used to define the projec-
tion operation. Indexes L and L′ are compact indexes of l,m, σ (for instance L runs
from 1 to 10 if the projection is done onto a d-electron material). In matrix notation,
the definition above reads Aloc = P̂A. The sum over k points is weighted, so N is the
number of k points in the Brillouin zone2.

Embedding The operation of embedding a generic local matrix ALL′ is defined as

Aijk =
∑

LL′

ÊLL′

ijk ALL′ =
∑

LL′

U ik
L ALL′U jk†

L′ . (4.2)

In matrix notation this is written A = ÊAloc.

4.2 Notable properties

Products of Uk have some notable properties.

Hermitian product: The product of Uk†Uk is Hermitian, namely:

Ok
LL′ =

∑

i

U ik†
L U ik

L′ is Hermitian : Ok
LL′ = (Ok

L′L)∗ (4.3)

Real sum: For each k1, it exists a point k2 such that

Ok2

LL′ = (Ok1

LL′)
∗ so that

1

N

∑

k

Ok
LL′ is Real (4.4)

2Is summing only over k-points of the irreducible Brillouin zone, an extra weight wk would appear inside
the

∑
k, but it’s irrelevant for our purpose.
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Diagonal sum: I still can not understand how Ok
LL′ happens to be diagonal, but this seems

to be related to symmetry relations between the k-points. This property is verified
numerically. In this case we can impose a normalization to the transformation matrixes
U ik
L such that 1

N

∑
k Uk†Uk = 1. Normalized projectors obey the equality

1

N

∑

ik

U ik†
L U ik

L′ = δLL′ (4.5)
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Chapter 5

The high-frequency limit

Depending on which of the two schemes one follows (the fully self-consistent one or the “1-
shot DMFT”), the definition of the impurity levels Eimp

LL′ is different because the local Green’s
function is different. In the high-frequency limit the hybridization function vanishes
by definition, so the Eimp

LL′ changes to ensure that ∆LL′(ω → 0) = 0.

5.1 The limit in the full-consistent cycle

Let’s derive the expression for the impurity level Eimp
LL′ in the fully self-consistent scheme We

drop the site-index τ for sake of simplicity.
After N iterations of the QSGW+DMFT loop, we ask for the self-consistent relation to

hold, that is we want the local part of the lattice self-energy (2.10)

GLL′(ω) =
∑

ik

U ik†
L

1

iω + µ− ε0
ik

U ik
L′ (5.1)

to coincide with the impurity self-energy

GLL′(ω) =
[
iω − Eimp − Σimp(ω)−∆(ω)

]−1

LL′ =
[
G0−1(ω)− Σimp(ω)

]−1

LL′ . (5.2)

The Green’s function (5.1), is the projection of the diagonal Green’s function Giik(ω). It
is obtained from the eigenvalues ε0

ik = εHik+Σ0
ik and the eigenstates ψ0

ik(r) of the Hamiltonian
H0
ijk. Note that the lattice Green’s function is diagonal on this basis. No quantity is energy-

dependent as the Hamiltonian H0
ijk is not. Because we are working in the fully self-consistent

scheme, the Hamiltonian comes from the quasiparticlization of the GW self-energy corrected
with the impurity self-energy minus the double counting, but it could be obtained from a
hybrid calculation, Hartree-Fock or even DFT.

The impurity Green’s function GLL′(ω) is expressed in terms of the impurity level Eimp
LL′ ,

the impurity self-energy Σimp
LL′ (ω) and the hybridization function ∆LL′(ω). All elements of

∆LL′(ω) vanish in the high-energy limit by definition of hybridization function. In
the same limit Σimp

LL′ (ω) is real. For this reason, it is sensible to write Σimp(ω) = Σimp(∞) +
Σ̃imp(ω) with the latter matrix vanishing at ω = ∞. The non-interacting impurity Green’s
function is defined as G0

LL′(ω) = [iω − Eimp −∆(ω)]−1
LL′ .

Let’s take now the ω →∞ limit of expression (5.1). Making a change of variable z = 1/ω,
the high-frequency limit coincides with z → 0+. For each ik pair, µ and ε0

ik are constant
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functions of the frequency. Let fik(z) = 1
i/z+cik

= z
i+zcik

with cik = µ−ε0
ik, then the expansion

of fik(z) around small positive values of z reads

fik(z) = f(0) + z
dfik
dz

∣∣∣∣
0

+
z2

2

d2fik
dz2

∣∣∣∣
0

+O(z3)

≈ 0− iz + cikz
2 +O(z3) .

(5.3)

Using the fact that z = 1/ω and the definition of cik, one finally gets the high-energy
expansion of the local Green’s function

GLL′(ω)
ω→∞−−−→

∑

ik

U ik†
L

[
− i
ω

+
1

ω2
(µ− ε0

ik)

]
U ik
L′ = − i

ω
δLL′ +

µδLL′ −∑ik U
ik†
L ε0

ikU
ik
L′

ω2
,

(5.4)
where we used the fact that

∑
ik U

ik†
Lτ cU

ik
L′τ = δLL′c for any complex number c.

Let’s now take the same limit for the right-hand side of equation (5.2). It is less straight-
forward because all quantities in the expression are actually matrices, but one can make use
of the exact Taylor expansion (geometric series)

(1 + A)−1 =
∞∑

n=0

(−A)n = 1−A +O(A2) . (5.5)

Let us now rewrite the impurity Green’s function

GLL′(ω) =
[
iω − Eimp − Σimp(ω)−∆(ω)

]−1

LL′

=
1

iω

[
1 +

iEimp

ω
+
iΣimp(ω)

ω
+
i∆(ω)

ω

]−1

LL′
.

(5.6)

Calling A = i (Eimp + Σimp(ω) + ∆(ω)) /ω, then we can expand expression (5.6) using
relation (5.5). In the high energy limit, the matrix A will be small enough for the expansion
to be truncated at the first order. Moreover, we recall that ∆LL′(ω →∞) = 0 and Σimp

LL′ (ω →
0) = Σimp

LL′ (∞). The resulting high energy limit, of the impurity Green’s function reads

GLL′(ω)
ω→∞−−−→ − i

ω
δLL′ − Eimp

LL′ + Σimp
LL′ (∞)

ω2
(5.7)

The self-consistent condition at high energy is obtained by equating expressions (5.4)
and (5.7)

− i
ω
δLL′ +

µδLL′ −∑ik U
ik†
L ε0

ikU
ik
L′

ω2
= − i

ω
δLL′ − Eimp

LL′ + Σimp
LL′ (∞)

ω2
, (5.8)

which leads to the definition of the impurity level

Eimp
LL′ =

∑

ik

U ik†
L ε0

ikU
ik
L′ − µδLL′ − Σimp

LL′ (∞) in the fully SC scheme. (5.9)

The high energy tail of Σimp
LL′ (∞) can be obtained by some accurate solver in this limit.

For instance the “Hubbard 1” solver assumes that the impurity is decoupled from the bath,
which corresponds to setting ∆LL′ = 0 everywhere. Hubbard 1 is therefore more accurate the
higher is the frequency we looked at. Otherwise Σimp

LL′ (∞) can be computed by sophisticated
interpolation schemes or by explicitly computing the Hartree-Fock terms using the impurity
Green’s function and local interaction U , under the assumption that these are the only
diagrams contributing at high frequency.

22



5.2 The limit in the 1-shot DMFT

In this 1-shot DMFT scheme, the local Green’s function looks like in (3.2). So, when evalu-
ating GLL′ = GLL′ in the high-energy limit, new terms will appear with respect to definition
(5.9).

In the 1-shot DMFT scheme

GLL′(ω)
ω→∞−−−→

∑

ijk

U ik†
L

[
1

iω

(
δij −

µδij − δijεQSGWik − Σ̄ijk(∞)

iω

)]
U jk
L′ (5.10)

(compare equation (3.2)) where in the last passage the geometric series (5.5) has been trun-
cated at the first order.

Working out all the expressions above, GLL′(∞) reads

GLL′(∞) ≈ − i
ω
δLL′ +

µ

ω2
δLL′ − 1

ω2

∑

ik

U ik†
L εQSGWik U ik

L′ − 1

ω2

∑

ijk

U ik†
L Σ̄ijk(∞)U jk

L′ (5.11)

where we used the fact that
∑

ik U
ik†
L U ik

L′ = δLL′. We remember here that Σ̄ is obtained

by an embedding procedure (see equation (3.3)) reported below for ease of reference

Σ̄ijk(ω) =
∑

MM ′

U ik
M

(
Σimp
MM ′(ω)− εHDC

MM ′ − ΣDC
MM ′(ω)

)
U jk†
M ′ . (5.12)

At self-consistency, the quantity (5.11) is equal to (5.7), that is

− i
ω
δLL′ +

µ

ω2
δLL′ − 1

ω2

∑

ik

U ik†
L εQSGWik U ik

L′ − 1

ω2

∑

ijk

U ik†
L Σ̄ijk(∞)U jk

L′ =

= − i
ω
δLL′ − Eimp

LL′ + Σimp
LL′ (∞)

ω2

(5.13)

which leads to the definition of Eimp
LL′

Eimp
LL′ =

∑

ik

U ik†
L εQSGWik U ik

L′ +
∑

ijk

U ik†
L Σ̄ijk(∞)U jk

L′ − Σimp
LL′ (∞)− µδLL′ (5.14)

The definition (5.14) is the exact definition of Eimp
LL′ in the 1-shot DMFT scheme.

However we can simplify it further if we can demonstrate that projecting an embedded
matrix gives the same matrix, (P̂ ◦ Ê = 1) . Indeed if this is the case
∑

ijk

U ik†
L Σ̄ijk(∞)U jk

L′ =
∑

ijMM ′k

U ik†
L U ik

M

(
Σimp
MM ′(∞)− εHDC

MM ′ − ΣDC
MM ′(∞)

)
U jk†
M ′ U

jk
L′

=
∑

MM ′

δLM
(
Σimp
MM ′(∞)− εHDC

MM ′ − ΣDC
MM ′(∞)

)
δM ′L′

= Σimp
LL′ (∞)− εHDC

LL′ − ΣDC
LL′(∞)

(5.15)

which inserted into (5.14) gives

Eimp
LL′ =

∑

ik

U ik†
L εQSGWik U ik

L′ − εHDC
LL′ −ΣDC

LL′(∞)− µδLL′ in the 1-shot DMFT scheme.

(5.16)
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5.3 Some comments on the properties of U

As it can be stressed by underlined statements, in both schemes we had made use of the
relation ∑

ik

U ik†
L U ik

L′ = δLL′ (5.17)

which ensures the fact that the projection of a constant is a constant.
However, this is not enough in the case of the 1-shot DMFT and we definitely need

that the embedding of a generic matrix AMM ′ followed by the projection gives back AMM ′ .
Namely we need the property

∑

ijk

U ik†
L

(∑

MM ′

U ik
MAMM ′U jk†

M ′

)
U jk
L′ = ALL′ (5.18)

to hold for any local matrix AMM ′ . This is equivalent to require idempotency of the operator
Π = P̂ ◦ Ê.

This seems to be the case for the transformations U we implemented, but I’m still puzzled
how it is possible.
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Chapter 6

Ensuring charge neutrality and
updating the density

6.1 The Fermi-Dirac distribution

The chemical potential µ is set on the top of the valence band. For an electronic system of
N electrons at equilibrium at temperature T , the number of electrons N is given by

N =
∑

k,i,σ

wkfikσ (6.1)

where wk is the weight of the k-point k and fikσ = (eβ(Eikσ−µ) + 1)−1 is the Fermi-Dirac
distribution at the inverse temperature β = (kBT )−1. If the calculation is not spin-polarized,
then summing over all spin is equivalent to a factor 2. In this case, one gets

N = 2
∑

k,i

wkfik (6.2)

Note that in the formulae above, the single-particle energies Eikσ are supposed to be
static. But this is not the case when the CTQMC local self-energy is embedded into the
QSGW Hamiltonian. In this case, the Hamiltonian

H̄ijk(iω) = δijε
QSGW
ik + Σ̄ijk(iω) (6.3)

has to be diagonalized at each energy (and eack k-point)

∑

j

[
δijε

QSGW
ik + Σ̄ijk(iω)

]
ψjk(iω) = εik(iω)ψjk(iω) (6.4)

and similarly for the left eigenvalue problem. The energy dependent (left) eigenvalues of
H̄ijk(iω) are εik(iω). To make use of equation (6.2) also in the case of energy-dependent
eigenvalues, one has to write the Fermi-Dirac distribution in a different way.

Before doing so, we just remark some notable symmetry properties of the eigenvalues:

Re[εik(−iω)] = Re[εik(iω)] : the real part is an even function, (6.5)

Im[εik(−iω)] = −Im[εik(iω)] : the imaginary part is an odd function. (6.6)
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Moreover, Re[εik(iω)] > µ for occupied states and Re[εik(iω)] < µ for empty states. It
vanishes at Fermi.

By writing the Green’s function in imaginary frequencies representation (Matsubara’s
frequencies) one can write the Fermi-Dirac distribution as

fik =
1

β

∞∑

n=−∞

Gik(iωn) +
1

2
=

1

β

∞∑

n=−∞

1

iωn + µ− εik(iωn)
+

1

2
. (6.7)

The imaginary frequencies iωn = (2n − 1)π/β are the Matsubara frequencies for fermionic
system and the electron number N is a real number. In fact, because of the symmetry
properties (6.5) and (6.6) only the real part of the summand survives.

NOTE: As far as I understood, the actual sum over Matsubara frequencies does not con-
verge, and one has to regularize the sum somehow. The result is the Fermi-Dirac
distribution up to a constant (the 1/2 factor) that depends on the choice of the regular-
ization. This is somewhat fuzzy to me, I haven’t worked out the analytical calculation
properly. however, in the low temperature limit (see below), the sum can be written as
an integral and it can be perfomed easily. The result gives a factor 1/2. Moreover, the
same factor 1/2 is found numerically: if one implements the sum over frequencies as it
is, one gets the 1/2 factor numerically. In textbooks, they probably say that the sum
over frequencies gives the Fermi-Dirac distribution because they make a smart choice
of the regularization function, but I haven’t found explicit reference to that.

NOTE: The fermionic Matsubara frequencies are equally spaced along the imaginary axis,
and they form a symmetric infinite set around iω = 0. Note however that, even if the
set is symmetric, frequencies are not symmetric with respect to index n: in fact they
verify ω−n = −ω(n−1).

This is actually due to the arbitrary choice of n = 0 of the definition (the 2n−1 factor)
that makes ω1 > 0 and ω0 < 0. If one wants a symmetric set with respect to the index,
it is possible to define ωn = (2n − 1)π/β + π/β with the index n ∈ Z \ {0}. Since I
don’t really need a symmetric index, I will not introduce this further complication.

It turns out that the numerical evaluation of expression (6.7) is not accurate even when
very large frequency range is sampled. In fact, Re[G(iω)] as a continuous function of ω has
a spike at iω = 0, so a very fine frequency grid is in principle needed in the low energy range
even though the ω = 0 point is not in the Matsubara set. Moreover, the closer εik(iωn) is
to µ, the sharper the spike is. This numerical problem, can be cured by subtracting and
adding a Green’s function G′(iωn) = (iωn − ξ′)−1 which has two characteristics: i) it has
static energy levels ξ′ and ii) the energy levels are real. In this way one gets

f =
1

β

∞∑

n=−∞

(G(iωn)−G′(iωn)) +

(
1

β

∞∑

n=−∞

G′(iωn) +
1

2

)
(6.8)

=
1

β

∞∑

n=−∞

(
1

iωn + µ− ε(iωn)
− 1

iωn − ξ′
)

+ f ′ (6.9)

where the band and k-point indices have been dropped for sake of simplicity.
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To simplify the summation in the formula above, one can rely on the symmetry properties
(6.5) and (6.6) to work only with the real part (which is an even function of the frequency).

f =
2

β

∞∑

n=0

Re

(
1

iωn + µ− ε(iωn)
− 1

iωn − ξ′
)

+ f ′ (6.10)

To evaluate the latter formula in practice, a cutoff energy ωM must be introduced so
∑

n =∑M
n=1 +

∑∞
n=N+1. In order to compute the second term, one (i) takes the low-temperature

limit and (ii) assumes that the eigenvalue tends to a real constant in the high energy limit.
In the limit (i), ∆ω = 2π/β tends to zero, and the Matsubara frequencies collapse forming a
continuous set along the imaginary axis. Hence 2

β

∑∞
n=M+1 = 1

π

∫∞
ωM

dω. Moreover, we make

the assumption (ii) ε(iω) = Re[ε(iωM)] = εM ∀ω > ωM . Under these two approximations
the Fermi-Dirac distribution reads

f =
2

β

M∑

n=1

Re

(
1

iωn + µ− ε(iωn)
− 1

iωn − ξ′
)

+ f ′+

− 1

π

∫ ∞

ωM

εM − µ
ω2 + (εM − µ)2

dω +
1

π

∫ ∞

ωM

ξ′

ω2 + ξ′2
dω

(6.11)

If εM − µ and ξ′ are not zero, then both integrals can be computed analytically:

∫ ∞

a

x

ω2 + x2
dω =

{
π
2
− arctan(a/x) if x > 0
−π

2
− arctan(a/x) if x < 0

}
= arctan

(x
a

)
(6.12)

Putting all these together, one gets the expression

f = f ′ +
2

β

M∑

n=1

Re

(
1

iωn + µ− ε(ωn)
− 1

iωn − ξ′
)
−A(εM − µ) +A(ξ′) (6.13)

with the function

A(x) =

{
1
π

arctan
(

x
ωM

)
if x 6= 0

0 if x = 0
(6.14)

NOTE: Note that we can always make the choice ξ′ = εM − µ, that would cancel the
arctan terms exactly in all cases. That would reduce the complexity of the formulas.
Moreover, it seems to make the code more stable. The choice Kristjan actually did in
his code is different, though. In fact he takes ξ′ = Re[ε(iω)] − µ. I’m sure Kristjian
already tried it, it would be interesting to know why he actually preferred the latter.

6.2 Adjusting the chemical potential

Our actual problem is that, given an hamiltonian

H̄ijk(iωn) = δijε
QSGW
ik + Σ̄ijk(iωn) (6.15)

sampled on the Matsubara frequencies, with eigenvalues εik(iωn), we need to adjust the
chemical potential of the system to ensure that the total number of electron N is kept
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constant during the calculation. Instead of changing the chemical potential, we prefer to fix
µ at the value obtained before the introduction of Σ̄, and to vary instead a correcting static
potential V which shifts the eigenvalues. This method also allow us to compute the density
of states on the real axis (see below.)

To ensure the charge neutrality, given N0 the reference electron number, we have to
find the root of N(V ) − N0. This is done by the subroutine rfalsi called inside getVnew.
In practice it is a refined try-and-error method, so for every V new the electron number
Nnew = N(V new) has to be computed again. Depending on the value of Nnew − N0 and
dNnew/dV , a further step is suggested.

6.2.1 Computing N(V )

We can devise two ways to compute the electron number N(V ). In the first case we can
take ξ′ik = εik(ω0) + V −µ with reference to the formulas above. This is close to the method
chosen by Kristijan, but in our implementation it produced some instabilities due to the A
functions, so I decided to make the choice ξ′ik = εik(ωM) + V − µ. In this case, the electron
number N(V ) is given by

N(V ) =
∑

ikσ

wk

[
f(εikσ(ωM) + V − µ) +

+
2

β

M∑

n=1

Re

(
1

iωn + µ− εikσ(ωn)− V −
1

iωn + µ− εikσ(ωM)− V

)] (6.16)

with no particular cases to be treated by hand.
This formula though requires the diagonalization of the Hamiltonian to be performed for

the last energy before the calculation of the electron number starts. If the index n runs from
1 to M , as in the formula above, this requires two different loops on the energies, whereas
wiht Kristijan’s choice the diagonalization and the accumulation of the terms in the sum can
be done at the same time. However this loss in efficiency can be overcomed if the loop runs
from M to 1.

6.2.2 Computing dN(V )/dV

One can rely once more on analytical expressions. Taking the derivative of expression (6.16)
with respect to V , one gets

dN(V )

dV
=
∑

ikσ

wk

[
− β exp{β(εikσ(iωM) + V − µ)}

(1 + exp{β(εikσ(iωM) + V − µ)})2
+

+
2

β

M∑

n=1

Re

(
1

(iωn + µ− εikσ(iωn)− V )2
− 1

(iωn + µ− εikσ(iωM)− V )2

)] (6.17)

remembering the Fermi function f(x) = 1/(1 + exβ).
Note that equation (6.17) allows for the calculation of the density of states at the real

energy V . So in the same way rfalsi move around the value of V to ensure charge neutrality
in the system, in the same way we can vary V on a grid and compute dN(V )/dV , getting
the density of states on the real axis through quantities computed on the imaginary axis.
And this can be done at every iteration of the CTQMC loop.
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6.3 Updating the density

The electron density is updated following a similar way. What follows (and what has been
implemented) is basically a copy of step 11 as devised in Phys. Rev. B 81, 195107.

With H̄ijk(iωn) as in equation (6.3), right and left eigenfunctions read

ψRlk(r, iωn) =
∑

i

CR
ilk(iωn)ψik(r) and ψLlk(r, iωn) =

∑

j

CL
jlk(iωn)ψjk(r) (6.18)

where they have been written as a linear combination of LDA (or QSGW) wavefunctions
ψik(r) at each energy and k-point. The index l is the index of the updated eigenstate, while
the indexes i, j run over the basis of LDA or QSGW wavefunctions. Their order is the same
as in the BLAS subroutine zgeev, which means that both CR

k and CL
k are matrices whose

columns are the eigenvectors of H̄. These matrices are such that
∑

j

H̄ijk(iωn)CR
jlk(iωn) = εlk(iωn)CR

ilk(iωn)

∑

i

CL∗
lik(ωn)H̄ijk(iωn) = εlk(iωn)CL∗

ljk(iωn)
(6.19)

The electron density can be written

ρ(r) =
∑

k,l

{
1

β

+∞∑

n=−∞

ψRlk(r, iωn)
1

iω + µ− εlk(iωn)
ψL∗lk (r, iωn)

}
(6.20)

=
∑

k,l

{
2

β

+∞∑

n=1

Re

[
ψRlk(r, iωn)

1

iω + µ− εlk(iωn)
ψL∗lk (r, iωn)

]}
(6.21)

=
∑

k

∑

ij

ψik(r)

{∑

l

2

β

+∞∑

n=1

Re

[
CR
ilk(iωn)CL∗

jlk(iωn)

iω + µ− εlk(iωn)

]}
ψ∗jk(r) (6.22)

ρ(r) =
∑

k

∑

ij

ψik(r)Wijkψ
∗
jk(r) (6.23)

where we introduced the density matrix Wijk = {...}. We used here the fact that the term
CR
ilk(iωn)CL∗

jlk(iωn)/(iωn+µ−εlk(iωn)) has even real part and odd imaginary part as functions
of iωn. This has been checked numerically.

By adding and subtracting the Fermi function as done in the previous section, the matrix
Wijk is computed as

Wijk =
∑

l

2

β

M∑

n=1

Re

[
CR
ilk(iωn)CL∗

jlk(iωn)

iω + µ− εlk(iωn)
−

Re[CR
ilk(iωM)CL∗

jlk(iωM)]

iω + µ− Re[εlk(iωM)]

]
+

+ Re[CR
ilk(iωM)CL∗

jlk(iωM)]fβ(Re[εlk(iωM)]− µ) .

(6.24)

This is done in the subroutine cmp denmat. In principle the expression above should be
computed summing over all Matsubara frequencies up to infinity. The truncated sum should
be corrected by additional terms, but because of the CR(iωn)CL∗(iωn) factors they have not
an explicit functional form as in equation (6.14). If M is high enough, I observed numerically
that

CR
ilk(iωn)CL∗

jlk(iωn) ≈ Re[CR
ilk(iωM)CL∗

jlk(iωM)] and Im[εlk(iωM)] ≈ 0 . (6.25)
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These two approximations allow us to neglect the correcting term for the truncation of the
Matsubara sum3.

To finally compute the updated density, one can diagonalise W and use the decomposition
Wijk =

∑
mRimkwmkR

−1
mjk, which is performed in diagdenmat. One gets finally

ρ(r) =
∑

k

∑

m

[∑

i

ψi(r)Rimk

]
wmk

[∑

j

R−1
mjkψ

∗
j (r)

]
(6.26)

that should in principle allow to use usual subroutines to compute the density with ro-
tated eigenfunctions and weighted contributions. In our case, since Wk is a symmetric
real matrix (hence Hermitian), R is real (Hermitian) too. The equalities R−1 = R† = RT

are observed to hold as expected. It can be useful to write the last expression as ρ(r) =∑
k

∑
m φmk(r)wmkφ

†
mk(r), that in matrix form reads

ρij =
∑

k

∑

m

φimkwmkφ
∗
mjk (6.27)

because in the code the function φmk(r) is actually expressed as a matrix of coefficient Φimk

where the index i runs over the LDA (or QSGW) eigenstates. The weights wmk and the
matrices Φimk are computed by mkdmftstates and passed to the subroutine addrbl devoted
to the calculation of the electronic density.

3I think that in equation (6.20) there should appear somewhere a factor 1/2 as in the previous section
but I can’t figure out where. In expression (6.24), which is similar to the one reported in the PRB paper,
this factor does not appear presumably because it’s cancelled by the second term in the Matsubara sum,
analogously to what done in the previous section. However the presence of the terms CRCL∗ complicates
the things in the same way as for the correcting terms discussed above. I assume the two approximations
discussed above still apply.
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Chapter 7

Maximum Entropy Method (MEM)

These notes are a rearrangement of the information I found in
1. J. E. Gubernatis, M. Jarrel, R. N. Silver and D. S. Sivia, Phys. Rev. B 44, 6011 (1991)
2. Johan Schött’s Master Thesis in Applied Physics, Chalmers University of Technology,
Gothenburg (2013)
3. The maxent run.py code by K.Haule.
The terminology I use in these notes might be uncorrect or misleading. The main goal of
these notes is to understand how to use the maxent run.py code and, in case, to rewrite it.

7.1 An inverse problem

After the CTQMC run, the updated lattice Green’s function Gijk(iω) can be computed on
the Matsubara frequency axis. However if we want to extract from the theoretical data a
spectral function A(ω) or an other quantity to be compared with some experimental data,
then we have to be able to write the Green’s function on the real axis. This is actually a
non-trivial inverse problem of the kind

G(iτ) =

∫ +∞

−∞
K(ω, iτ)A(ω)dω (7.1)

where G(iτ) is the computed Green’s function in imaginary time, periodic in 0 ≤ τ ≤ β,
K(ω, iτ) is a known Kernel and A(ω) is the desired spectral function on the real axis. The
inverse temperature β = (kBT )−1 where kB is the Boltzman constant. Band and k-point
indexes have been dropped for simplicity.

The Kernel is actually known and it comes from the fluctuation-dissipation theorem. For
a fermionic Green’s function4 it reads

K(ω, iτ) =
e−τω

1 + e−βω
(7.2)

Despite the known form of the Kernel, the inversion problem is highly non-trivial and non
univoque slutions can be found. In solving the problem then, one solution among all possible
ones has to be picked, but with what criteria shall we chose? We might have some prior

4The “+” sign in the denominator accounts for the Fermi statistics, it wuold be a “-” in case of bosonig
Green’s function (like phonons).
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knowledge about sum rules, normalization, asymptotic behaviour, or other properties that
might allow us to restrict the set of possible candidates. But how can we incorporate this
prior information in a quantitative way?

In the maximum entropy method (MEM), this question is reformulated in terms of a
statistical inference problem: “What is the most probable spectral function that produces the
theoretical Green’s function and how confident are we in the answer?”. To identify what
is the most probable Â(ω) spectral function, an information entropy measure is associated
to several trial spectral functions; the one which maximizes the information entropy is the
most probable one. To reformulate equation (7.1) in a statistical lenguage and to invert the
problem via quantities that can be calculated, the theory relies on the Bayes’ theorem.

7.2 Bayes’ theorem and statistical approach

It has been shown5 that any inference problem can be restated in a statistical lenguage. In
our case, wat we want to maximize is the probability density functional P [A|Ḡ, I], that is
the probability of having a spectral function A, given the CTQMC Green’s function Ḡ and
the prior information I. According to the Bayes’ theorem we can write

P [A|Ḡ, I] ∝ P [Ḡ|A, I]P [A|I] (7.3)

The conditional probability of measuring A, given Ḡ and I is proportional to the conditional
probability of measuring Ḡ, given A and I times the conditional probability of measuring A
given I. The lhs is also called “a-posteriori PDF”.

The first term in the rhs of expression (7.3) is called “likelihood function” and it is a
measure of how probable is to obtain the computed Green’s function Ḡ from a given spectral
function A and prior information I. The second term is called “entropic prior PDF”, and
can be seen as a weight that measures how compatible is the spectral function A with our
prior information about it.

The strong point of the MEM method seems to me this: the inverse problem in the lhs of
(7.3), is reformulated in terms of a direct problem that can be easily computed (the likelihood
function) and a weight. Our aim being to maximize the lhs, we will try to maximize the
product of the two terms of the rhs by means of a statistical sempling of the two propability
distributions.

7.2.1 The liklihood function

How do we compute the likelihood function P [Ḡ|A, I]?

Imagine you have a trial spectral function A(ω), then you can compute the corresponding
Green’s function G(iτ) through equation (7.1). The distance between this trial Green’s
function G(iτ) and the QMC Green’s function Ḡ(iτ) can be used to estimate the probability
of getting Ḡ from A.

To do so, we need to define a measure between Green’s functions and the error associated
to any of the discretized measures G(iτj) (note the discretization of the time) This is actually
simple within the assumption that data are independent and they are subject to Gaussian

5R. T. Cox Am. J. Phys 14,1 (1946)

32



noise with width σj = σ(τj). Under these hypothesis, one can write the likelihood PDF as

P [Ḡ|A, I] =
e−χ

2/2

∏
j

√
2πσ2

j

with χ2 =
∑

j

[Ḡ(iτj)−G(iτj)]
2

σ2
j

(7.4)

Maximizing P [Ḡ|A, I] corresponds then in a minimization of the least-squares distance χ2

between the actual Ḡ and the trial G.

7.2.2 The entropic prior

What information do we have about the spectral function A? We can state for sure that it
is an additive, non-negative function. For this information, there are arguments6 leading to
the entropic form

P [A|I,m, α] =
eαS[A,m]

ZS(α)
with S[A,m] =

∫ [
A(ω)−m(ω)− A(ω) ln

(
A(ω)

m(ω)

)]
dω (7.5)

This is the conditional probability of measuring A, given the prior informatio I, the model m
and α. The model m(ω) is actually the function that allows us to incorporate all information
we have in a quantitative way. If there were no data, the “a-posteriori” probability would
coincide with the entropic prior which is maximised when A(ω) = m(ω), that’s where the
name maximum entropy comes from. The parameter α can be seen as a controlling param-
eter, establishing the relative importance of the entropic prior and the likelihood function
(see below).

7.2.3 A functional minimization problem

Putting together equations (7.4) and (7.5) into equation (7.3), it turns out that

P [A|Ḡ, I] ∝ exp

{
αS[A,m]− χ2

2

}
. (7.6)

The argument of the exponential function has to be maximized, that corresponds in mini-
mizing the functional

Q[A](α) =
χ2

2
− αS[A] . (7.7)

Note that the parameter α can be seen in this context as a mixing parameter that controls
how important is the entropic prior in the sum. If α → 0, the a-posteriori PDF coincides
with the likelihood function, that is no prior information is included in the conditional
propbability. Conversely, it α → ∞, then we rely completely on the prior information and
the maximization will be attained for A(ω) = m(ω). The functional Q has to be minimized
both to respect to A(ω) and α.

6see for instance E. T. Jaynes, in Maximum entropy and Bayesian Methods edited by J. H. Justice
(Cambridge University Press, Cambridge, England 1986); S. F. Gull, in Maximum Entropy and Bayesian
Methods in Science and Engineering edited by G. J. Erickson and C. R. Smith (Kluwer Academic, Dordrecht,
1988); D. S. Sivia, Los Alamos Sci. 19, 180 (1990) and references therein; J. Skilling, in Maximum entropy
and Bayesian Methods edited by J. Skilling (Kluwer Academic, Dordrecht, 1989) and S. F. Gull ibid.
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At fixed α, the minimization with respect to A(ω) is done in maxent run.py by means of
a Metropolis algorithm. In practice several trial spectral functions A′(ω) = A(ω)+δA(ω) are
generated and the changes δA(ω) with respect to the previous A(ω) are accepted or rejected
depending on the changes is Q[A]−Q[A′]. This leads to an improvement on the image Aα(ω)
based on statistical sampling. See below for more details.

Once a reliable Aα(ω) is found, one can minimize Q[Aα](α) with respect to α. It is
possible to show7 that this minimization procedure leads to the equation

−2αS

Tr{Λ(Λ + α)−1} = 1 (7.8)

where we introduced

Λij =
√
A(ωi)

∑
τ K(ωi, τ)K(ωj, τ)

σ2(τ)

√
A(ωj)

√
dωidωj (7.9)

The value of α is then updated depending on ratio (7.8) and the calculation of a new
spectral function A(ω) is repeated until convergence.

7.3 Actual implementation maxent run.py

The python script maxent run.py manipulates the CTQMC self-energy to get the imaginary-
time Green’s function and manipulates the ouptut spectral-function Â(ω) of the maximum
entropy method to get the Green’s function and the self-energy in the real frequency axis. The
actual maximum entropy method on Ḡ(iτ) is implemented in two modules: maxentropy.py
and a collection of fortran routines maxent routines.f90.

The general picture of the method is a three step procedure:

Sample Green’s function: From the CTQMC self-energy Σ(iω) one constructs the Green’s
function in imaginary time Ḡ(iτ) with 0 ≤ τ ≤ β by Fourier-transfrom the Matsubara
Green’s function G(iω) = 1/(iω − Σ(iω)).

Maximum entropy method: The maximum entropy method is applied to Ḡ(iτ) in order
to reconstruct the most probable spectral function on the real frequency axis Â(ω).

The real-frequency Self-energy: Applying the Kramers-Kronig relations to the spec-
tral function Â(ω), the most probable real-frequency Green’s function Ĝ(ω) and the
corresponding self-energy are obtained as Σ̂(ω) = ω − 1/Ĝ(ω).

The core of the procedure is of course the Maximum Entropy method that is performed
by maxentropy.py.

7.3.1 Maximum entropy method in maxentropy.py

After the calculation of the Green’s function on the imaginary time, the python function
MaximumEntropy is called. The actual implementation relies basically on two loops: an

7The proof actually rely on the minimization of the second order term in a Taylor expansion of Q[A](α),
but going through the details of such demonstration is beyond the purpose of these note. See Appendix of
reference [1].
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outer loop to get best estimate of α̂ (number of iterations controlled by input variable Nitt),
an inner loop to get the best estimate of Â (anealing loop, controlled by variable Asteps).
The implementation scheme follows several steps.

1. A frequency mesh ωj is defined in the real frequency axis (non necessarilly uniform).
The corresponding array dωj to be used in integration is also defined.

2. The integration kernel K(ωj, iτ) is computed according to formula (7.2). Because of the
discretization of the time variable, Kjτ is actually a matrix of dimensions (2Nw+1)×Nt.

3. The Gaussian weight sxt = 1/σ2
τ appearing in formula (7.4) is computed for all imag-

inary times (note the discretized-time notation). It can be uniform (στ = σ, input
idg=1) or proportional to the Green’s function (στ = σḠτ , input idg=0). The value of
σ is defined by the input variable deltag.

4. The model mi = m(ωi) is constructed. It can be a flat distribution (input iflat=0), a
gaussian distribution (input iflat=1 ) with variance σ, or it can be imported from a
file “model.dat” (input iflat=2).

5. Create a random spectral function Ai = A(ωi).

6. Compute the matrix Tij = [
∑

τ KiτKjτ/σ
2
τ ](dωidωj)

−1 which is the part of Λij that
does not depend on Ai, so its construction can be left outside the loops.

7. Outer loop starts for a maximum of Nitt iterations Within this loop one im-
proves on the estimate of α by evaluating the ratio (7.8)

7.1. Some initialisation before the inner loop is started. The most notable quantity
here is dai, a vector added to Ai used to improve on the prediction

7.2. Inner loop starts for Asteps iterations Within this loop one improves on the
estimate of Ai using the Metropolis algorithm.

7.2.1. Compute the Green’s function Gτ =
∑

iAiKiτ .

7.2.2. Compute χ2 =
∑

τ (Ḡτ −Gτ )
2/σ2

τ as in equation (7.4).

7.2.3. For all real frequencies, a trial A′i is generated and the corresponding G′τ and
χ2′ are computed. The difference Q−Q′ is evaluated and the changes to the
spectral function are accepted according to the Metropolis algorithm. That
is if Q′ < Q the trial spectral function is accepted and becomes the new
one, if Q′ ≥ Q then changes are accepted with a probability proportional to
exp{Q−Q′}.

7.2.4. A method to adjust automatically the internal parameters of the Metropolis
algorithm based on the acceptance/trial ratio is implemented.
The annealing loop ends here

7.3. After the annealing loop, the improved spectral function Ai for the given α is used
to compute the entropic value S = −∑iAi ln (Ai/mi) dωi

7.4. The matrix C = Λ(Λ− α)−1 is computed and its trace TrC evaluated (see equa-
tions (7.8) and (7.9)).
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7.5. The ratio (7.8) is evaluated. If it is close to 1 within the tolerance parameter
min ratio the outer loop is exited, otherwise α is improved by increasing or
decreasing it of a random amount.
The outer loop ends here

8. Broadening loop starts for Nr iterations Within this loop, the procedure of the
outer loop is repeated with two main differences. First: at the beginning of each loop,
the spectral function is broadened by a convolution with a Gaussian. Second: no
update of α is performed even though the ratio (7.8) is evaluated. It is worthy to note
that in Kristjian’s test, this loop is skipped as Nr=0 (probably not necessary).

9. The final best estimate of the spectral function is recorded in the file “dos.out”.

7.3.2 Input and Output files

The program maxent run.py requires two input files: the CTQMC self-energy (argument of
maxent run.py) and the parameters file maxent params.dat of which here is a template:

params={’statistics’: ’fermi’, # fermi/bose

’Ntau’ : 300, # Number of time points

’L’ : 10.0, # cutoff frequency on real axis

’Nw’ : 400, # number of frequency points on real axis

’gwidth’ : 2*10.0, # width of gaussian

’idg’ : 1, # Gaussian error. 1:s=deltag ; 0:s=deltag*Gt

’deltag’ : 0.01, # error

’Asteps’ : 4000, # anealing steps

’alpha0’ : 1000, # starting alpha

’min_ratio’ : 0.005, # condition to finish, what should be the ratio

’iflat’ : 1, # model. 0:constant ; 1:Gaussian s=gwidth ; 2:model.dat

’Nitt’ : 1000, # maximum number of outside iterations

’Nr’ : 0, # number of smoothing runs

’bwdth’ : 0.03, # smoothing width

’Nf’ : 40, # inverse Fourier:high-freq limit from the last Nf points

}

The maximum entropy procedure is applied to Ḡ(iτ) for all channels of the input self-
energy. During the runtime, several files are produced, some of them are temporary files.

Spectral function: For each step itt of the outer loop (and for each step of the broadening
loop), the spectral function of the current channel is recorded on files dos itt (and
dos Nitt). As these files are overwritten, only the last channel is left at the end of
the run. The final real-frequency spectral function of channel c is recorded in file
dos.out.c. At each channel c, the temporary file dos.out with the spectral function
A(ω) is written and copied into dos.out.c and dosn. The latter is another temporary
file used as input of the Kramers-Kronig.

Green’s function: The output of the Kramers-Kronig transformation for channel c is
recorded in Gc. At channel c, files gt0.c and gtn.c report respectively the initial
(Ḡ) and final (G) imaginary-time Green’s function. The latter is a copy of the tempo-
rary file gtn overwritten at each channel.

36



Self-energy: The real-frequency self-energy extracted from Gc is recorded in sig.c for the
channel c. These data are then all collected in the main output file Sig.out where
the resulting self-energy on the real-frequency axis is recorded. First column is the
frequency, followed by real and imaginary parts of the self-energy per channel c.

During the runtime, the status of the calculation is printed on the screen. It’s curious to
note that redirecting the output to a file (like a log file) shuffle the order of the lines.

7.4 Results

In this section I would like to present some application of the method. I tried to apply the
method do Ni and LSCO, but the parameters I’ve chosen are not good, and spectra are
meaningless. I report in any case a test calculation from Kristjan’s folder. Unfortunately I
don’t know where the input self-energy comes from, so the calculation has to be taken just
as a reference of what “reliable” results should look like.

7.4.1 Kristjan’s input self-energy
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Figure 7.1: Imaginary part of the impurity sef-energy on the Matsubara’s frequency axis.
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Figure 7.2: Spectral function resulting from the self-energy of Figure 7.1.

In this test case, the impurity is a d-level system. The original calculation is not spin-
polarized so the resulting self-energy has only five channels. In Figure 7.1 I report the
imaginary part of the self-energy on the imaginary-frequency axis.

The input file used to execute the maximum entropy method is the maxent params.dat
reported at the beginning of section 7.3.2. The resulting spectral function is reported in
Figure 7.2.
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Chapter 8

Dynamical Double-counting (I) :
cRPA or cLDA?

In order to get a dynamical ΣDC
LL′(ω) from a static in-site interaction U , one has to downfold

high-energy excitations (and non-local effects) in a proper way into U . This chapter is
devoted to this aspect. There are two methods to get U from ab-initio calculations, the
constrained LDA method and the constrained RPA.

8.1 The interaction U in d- and f-electron elements

In the work by D. van del Marel and G. A. Sawatzky [Phys. Rev. B 37, 10674 (1988)], it is
given an expression for the effective Hubbard U interaction on d and f electrons for atoms
in a metallic matrix. In particular the expression is given for the local Coulomb repulsion

F 0
l =

1

2l + 1

∑

m<n

∫ ∫
|ψlm(r1)|2 1

|r1 − r2|
|ψln(r2)|2dr1dr2 (8.1)

for l = 2 or 3 (d or f electrons) and ψlm(r) single-particle wave functions in the same shell
(identical principal quantum number). The local exchange between two electrons in the same
shell is given by

Jl =
1

2l + 1

∑

m<n

∫ ∫ [
ψlm(r1)ψln(r1)

1

|r1 − r2|
ψlm(r2)ψln(r2)

]
dr1dr2 (8.2)

which is actually a combination of Slater integrals F 2, F 4 (and F 6 in case of f electrons).
More specifically J = (F 2 + F 4)/14 for l = 2 and J = (286F 2 + 195F 4 + 250F 6)/6435 for
l = 3.

The additional integral C is also given

Cl=2 =
1

14

(
9

7
F 2 − 5

7
F 4

)
Cl=3 =

1

6435

(
286F 2 +

780

11
F 4 − 1750

11
F 6

)
(8.3)

which account for the multipole contributions due to the nonspherical charge distribution in
cases when the shell is neither full or at half-filling.

Further on in the paper, the authors provide the effective Hubbard U in terms of F 0,J
and C, together with and empirical linear expressions to evaluate them.
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Table 8.1: Local interaction terms (in eV)

La (Z = 57; 4f 1) Cu (Z = 29; 3d9)
F 0 6.7 3.18
J 0.69 1.19
C 0.3105 0.6069

Following their prescriptions, the paramters for La and Cu are both U2 = F 0 − J − C,
where the empirical expressions for the coefficients are given in Table 8.1. I’m pretty sure
about Cu, but for La the paper is not so clear, as it is the first in the 4f row, but it prefers
to occupy the 5d shell.

The U used in Sangkook’s calculations [arXiv 1504.07569] is for the Cu 3d1 shell. It is
F 0 = 12 eV and J = 1.4 eV. The value of F 0 is particularly high with respect to what
obtained by the empirical formula of van der Marel and Sawatzky. This may be due to the
fact that in their work, they provide values for atoms embedded into a metallic environment.
Metallic screening can be the reason why the density-density interaction F 0 so low than
what used by Sangkook.

8.2 Overview on the cLDA method to compute U

In constrained LDA (cLDA), the basic idea is to obtain the effective interaction acting on d
(or f) electrons from derivatives of the total energy. The main equation is

∂εi
∂nj

= 〈ij|(v + fxc)ε
−1|ij〉 ≈ 〈ij|W |ij〉 (8.4)

where εi is the energy of the level i and nj is the occupation number of the level j. The RPA
approximation is used to make fxc disappear from the equation above.

The basic idea is to compute the change in energy (usually taken as the center of mass
of the band of the d states) with respect to the change of occupancy of the d band. In order
to do that, one has to constraint the number of occupancy and perform several calculations
by changing the constraint. Furthermore, the hopping between d states and the rest of the
system is suppressed.

This method actually has some deficiency in treating the screening from the non-correlated
orbitals [see F. Aryasetiawan, K. Karlsson, O. Jepsen and U. Schönberger, Phys. Rev. B
74, 125106 (2006)]. Moreover, in Mark’s code there is not ready-made way to constraint the
occupancy of a given level, so it would require new tools to be implemented.

8.3 Overview on the cRPA method to compute U

The idea behind the constrained RPA is to compute the effective interaction on the d (or
f) by splitting the one-electron transitions into those between levels of the correlated subset
and the rest. The basic assumption is that

χ0(τ) = χ0
d(τ) + χ0

r(τ) (8.5)
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where the correlated polarizability χ0
d(τ) is computed as a sum over all transitions where

both intial and final states are in the correlated subset. The full screened interaction W is
defined in RPA as

W−1(τ) = v−1 + χ0(τ) = v−1 + χ0
d(τ) + χ0

r(τ) (8.6)

that is the Coulomb interaction v screened by all independent-particle transitions of the
system.

The effective interaction U(τ), is defined as the bare interaction v screened by the rest
of the system

U−1(τ) = v−1 + χ0
r(τ) . (8.7)

The full screening is finally recovered once the effective interaction is screened by the corre-
lated transitions

W−1(τ) = U−1(τ) + χ0
d(τ) . (8.8)

It is worth noting that in cRPA the effective U(τ) depends on time, so it is dynamical
because χ0

d(τ) is. What is usually done is to take the static limit and use U = U(ω = 0), but
this can be justified only if U(ω) is almost constant in the energy region of interest. This can
be the case if we are interested in the low-energy physics (around Fermi) and the window
to split between correlated and non-correlated transitisons is big enough. However, once a
static U is taken, the full screening of equation (8.8) is not obtained anymore. Instead one
finds the approximated screening

W−1
loc (τ) = U−1 + χ0

d(τ) . (8.9)

where the subscript ‘loc’ has been used to use the same notation of Sangkook and following
the notation of equation (2.19).

For cRPA see also steps from 13 to 16 in chapter 2.2.

8.4 Comments
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