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Approach to solve?

Independent particles
Green function

/ /
G — Z @,y (r)
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Eigenvectors and values of DFT/HF Hamiltonian can be used!

LDA based GW VERY successful and widely used!
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* What happens when DFT/HF is a poor starting point?
First-order Perturbation theory may not be sufficient!

* What effect in using G,,?

e What effect will phonons have on the electron
system? (Savio will discuss!)

e What effect does A have in the expression for P (’I?D P

* How to handle the interaction kernel K = 6X/6G

e What effect does A have in the expression for = (’; 6w

 Limit of a quasiparticle picture?

e Limitations of basis set, time integration techniques,
cut-offs, accurate experimental data, etc
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e What happens when DFT/HF is a poor starting point?
First-order Perturbation theory may not be sufficient!

Self-consistent GW is the answer (possibly?)!
How to implement self-consistency?
QSGW method: Perturbation minimised using the GWA self-consistently

* What effect in using G,?

In QSGW poles of match G, poles of G
Interacting GG can also be used!

QSGW missing the effect of A
In both Pol. & S.E
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ELECTRON-HOLE/EXCITONS/LADDER DIAGRAMS

P =—-iGGA
A =1+ KGGA

Adopt the GWA and assume W does not vary with G to get 6>/6G = iW(w = 0)

Dynamical effects not trivial
to include!

This gives the Bethe-Salpeter Equation (BSE)

P = P,— P,WP

Macroscopic dielectric ¢, = /65, (q.0) €e=1—vP

Using the GWA electronic structure** in the BSE to produce the macroscopic
dielectric function is a common technique and many codes do this Yambo, Vasp,
Exciton,...

This method, usually called, GW+BSE demonstrates the effect of A on the dielectric
function

** Note that the electronic structure here (i.e., > ) does not include the effect of A
at all!
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Pros and Cons

e QSGW goes beyond single-shot GW and removes starting point dependence
e Significantly corrects electronic structure in correlated systems, e.g., NiO

 Band gaps overestimated by up to 2eV in LiF (GWA gets it almost exact); why?

Why the large overestimation?

e Electron-phonon interactions and ladder diagrams are missing in the SELF-
ENERGY

e Can we use the BSE to improve on W?
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LADDERS IN THE SELF ENERGY

Macroscopic dielectric function for optical spectra & EELS calculate

€M(qa 60) — 1/60_()1(% 60)

I.e., a single matrix element (the macroscopic part G = 0) for a single k-point

To improve the electronic structure we need the FULL matrix for ALL k in the BZ

W=e¢c¢l

This new W is then used In the expression for 2
> =iGW

Role of A in the expression for X not as important as in P!
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RESULTS: NIO (2)
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RESULTS: BAND GAPS
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CuCl: too shallow Cu d state intermixes too strongly with the Cl p states, pushing them too high energy, reducing the gap. Vertex in S.E. may fix
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Thank You!



