Questaal Home
Navigation

Spherical Harmonics

Questaal objects with basis sets defined by spherical harmonics, such as LMTOs or smooth Hankel functions, order the harmonics as m=−l, −l+1, … 0, … l.

The Questaal codes use real harmonics Υlm(r^)\Upsilon_{lm}(\hat{\mathbf{r}}), real versions of the usual (complex) spherical harmonics Ylm(r^)Y_{lm}(\hat\mathbf{r}). The Υlm\Upsilon_{lm} are functions of solid angle on a unit sphere, while the “solid real harmonics” Υlmrl\Upsilon_{lm}r^l are polynomials in x, y, and z. (1)  There is a corresponding set of “solid spherical harmonics” or spherical harmonic polynomials Ylm=rlYlm\mathcal{Y}_{lm} = r^l Y_{lm}.

Caution: Questaal source codes typically use the symbol Ylm to refer to either Υlm\Upsilon_{lm} or to the rlΥlmr^l \Upsilon_{lm}, depending on the context. In places they can be rotated to the true spherical harmonics YlmY_{lm}.

The Υlm\Upsilon_{lm}, YlmY_{lm} and Ylm\mathcal{Y}_{lm} are shown for l=0…3 in the order used by the Questaal code:

indexlmpolynomial rlΥlmr^l \Upsilon_{l\,m}spherical harmonics Ylm(θ,ϕ)Y_{l\,m}(\theta,\phi)spherical harmonic polynomials Ylm(r)\mathcal{Y}_{l\,m}(\mathbf{r})                      
10014π\sqrt\frac{1}{4\pi}14π\sqrt\frac{1}{4\pi}14π\sqrt\frac{1}{4\pi}                            
21-134πy=[+Y1,1+Y11]i2\sqrt\frac{3}{4\pi}\,y = \left[+Y_{1,-1}+Y_{1\,1}\right]\frac{i}{\sqrt{2}}+38πsinθeiϕ=[iΥ1,1+Υ11]/2+\sqrt\frac{3}{8\pi} \sin\theta e^{-i\phi} = \left[-i \Upsilon_{1,-1}+\Upsilon_{1\,1}\right]/\sqrt{2}38π(xiy)\sqrt\frac{3}{8\pi}(x-iy) 
31034πz=Y10\sqrt\frac{3}{4\pi}\,z = Y_{1\,0}+34πcosθ=Υ10+\sqrt\frac{3}{4\pi} \cos\theta = \Upsilon_{1\,0}34πz\sqrt\frac{3}{4\pi}\,z 
41134πx=[+Y1,1Y11]12\sqrt\frac{3}{4\pi}\,x = \left[+Y_{1,-1}-Y_{1\,1}\right]\frac{1}{\sqrt{2}}38πsinθeiϕ=[iΥ1,1Υ11]/2-\sqrt\frac{3}{8\pi} \sin\theta e^{i\phi} = \left[-i \Upsilon_{1,-1}-\Upsilon_{1\,1}\right]/\sqrt{2}38π(x+iy)-\sqrt\frac{3}{8\pi}(x+iy) 
52-212154π(2xy)=[+Y22Y22]i2\frac{1}{2}\sqrt\frac{15}{4\pi}(2xy) = \left[+Y_{2\,-2}-Y_{2\,2}\right]\frac{i}{\sqrt{2}}14152πsin2θe2iϕ=[iΥ2,2+Υ22]/2\frac{1}{4}\sqrt\frac{15}{2\pi} \sin^2\theta e^{-2i\phi} = \left[-i \Upsilon_{2,-2}+\Upsilon_{2\,2}\right]/\sqrt{2}14152π(xiy)2\frac{1}{4}\sqrt\frac{15}{2\pi} (x-iy)^2 
62-112154π(2yz)\frac{1}{2}\sqrt\frac{15}{4\pi}(2yz)12152πcosθsinθeiϕ\frac{1}{2}\sqrt\frac{15}{2\pi} \cos\theta \sin\theta e^{-i\phi}12152πz(xiy)\frac{1}{2}\sqrt\frac{15}{2\pi} z (x - iy) 
7201254π(3z2r2)\frac{1}{2}\sqrt\frac{5}{4\pi}(3z^2-r^2)See Ref 41254π(2z2(x+iy)(xiy))\frac{1}{2}\sqrt\frac{5}{4\pi}(2z^2-(x+iy)(x-iy)) 
82112154π(2xz)\frac{1}{2}\sqrt\frac{15}{4\pi}(2xz)12152πcosθsinθeiϕ-\frac{1}{2}\sqrt\frac{15}{2\pi} \cos\theta \sin\theta e^{i\phi}12152πz(x+iy)-\frac{1}{2}\sqrt\frac{15}{2\pi} z (x + iy) 
92212154π(x2y2)=[+Y22+Y22]12\frac{1}{2}\sqrt\frac{15}{4\pi}(x^2-y^2) = \left[+Y_{2\,-2}+Y_{2\,2}\right]\frac{1}{\sqrt{2}}14152πsin2θe2iϕ=[iΥ2,2+Υ22]/2\frac{1}{4}\sqrt\frac{15}{2\pi} \sin^2\theta e^{2i\phi} = \left[i \Upsilon_{2,-2}+\Upsilon_{2\,2}\right]/\sqrt{2}14152π(x+iy)2\frac{1}{4}\sqrt\frac{15}{2\pi} (x + iy)^2 
103-314π35/8y(3x2y2)\sqrt{\frac{1}{4\pi}}\sqrt{35/8}\,y(3x^2-y^2)+14354πsin3θe3iϕ=[iΥ3,3Υ33]/2+\frac{1}{4}\sqrt\frac{35}{4\pi} \sin^3\theta e^{-3i\phi} = \left[-i \Upsilon_{3,-3}-\Upsilon_{3\,3}\right]/\sqrt{2}+14354π(xiy)3+\frac{1}{4}\sqrt\frac{35}{4\pi} (x-iy)^3 
113-214π105xyz\sqrt{\frac{1}{4\pi}}\sqrt{105}\,xyz141052πcosθsin2θe2iϕ\frac{1}{4}\sqrt\frac{105}{2\pi} \cos\theta \sin^2\theta e^{-2i\phi}141052πz(xiy)2\frac{1}{4}\sqrt\frac{105}{2\pi} z (x - iy)^2 
123-114π21/8y(5z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{21/8}\,y(5z^2-r^2)See Ref 414214π(4z2(x+iy)(xiy))(xiy)\frac{1}{4}\sqrt{\frac{21}{4\pi}}(4z^2-(x+iy)(x-iy))(x-iy) 
133014π7/4z(5z23r2)\sqrt{\frac{1}{4\pi}}\sqrt{7/4}\,z(5z^2-3r^2)See Ref 41274π(2z23x23y2)z\frac{1}{2}\sqrt{\frac{7}{4\pi}}(2z^2-3x^2-3y^2)z 
143114π21/8x(5z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{21/8}\,x(5z^2-r^2)See Ref 414214π(4z2(x+iy)(xiy))(x+iy)-\frac{1}{4}\sqrt{\frac{21}{4\pi}}(4z^2-(x+iy)(x-iy))(x+iy) 
153214π105/4z(x2y2)\sqrt{\frac{1}{4\pi}}\sqrt{105/4}\,z(x^2-y^2)141052πcosθsin2θe2iϕ\frac{1}{4}\sqrt\frac{105}{2\pi} \cos\theta \sin^2\theta e^{2i\phi}141052πz(x+iy)2\frac{1}{4}\sqrt\frac{105}{2\pi} z (x + iy)^2 
163314π35/8x(x23y2)\sqrt{\frac{1}{4\pi}}\sqrt{35/8}\,x(x^2-3y^2)14354πsin3θe3iϕ=[iΥ3,3Υ33]/2-\frac{1}{4}\sqrt\frac{35}{4\pi} \sin^3\theta e^{3i\phi} = \left[-i \Upsilon_{3,-3}-\Upsilon_{3\,3}\right]/\sqrt{2}14354π(x+iy)3-\frac{1}{4}\sqrt\frac{35}{4\pi} (x+iy)^3 
174-414π315/4xy(x3y2)\sqrt{\frac{1}{4\pi}}\sqrt{315/4}\,xy(x^3-y^2)14π315/128sin4θe4iϕ\sqrt{\frac{1}{4\pi}}\sqrt{315/128}\sin^4\theta e^{-4i\phi}14π315/128(xiy)4\sqrt{\frac{1}{4\pi}}\sqrt{315/128}\,(x-iy)^4 
184-314π315/8yz(3x2y2)\sqrt{\frac{1}{4\pi}}\sqrt{315/8}\,yz(3x^2-y^2)14π315/16sin3θcosθe3iϕ\sqrt{\frac{1}{4\pi}}\sqrt{315/16}\, \sin^3\theta\cos\theta e^{-3i\phi}14π315/16(xiy)3z\sqrt{\frac{1}{4\pi}}\sqrt{315/16}\,(x-iy)^3z 
194-214π45/4xy(7z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/4}\,xy(7z^2-r^2)See Ref 414π45/32(xiy)2(7z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/32}\,(x-iy)^2\,(7z^2-r^2) 
204-114π45/8yz(7z23r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/8}\,yz(7z^2-3r^2)See Ref 414π45/16(xiy)z(7z23r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/16}\,(x-iy)\,z\,(7z^2-3r^2) 
214014π(3/8)(35z430r2z2+3r4)\sqrt{\frac{1}{4\pi}}(3/8)\,(35z^4-30r^2\,z^2+3r^4)See Ref 414π(3/8)(35z430r2z2+3r4)\sqrt{\frac{1}{4\pi}}(3/8)\,(35z^4-30r^2\,z^2+3r^4) 
224114π45/8xz(7z23r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/8}\,xz(7z^2-3r^2)See Ref 414π45/8(x+iy)z(7z23r2)-\sqrt{\frac{1}{4\pi}}\sqrt{45/8}\,(x+iy)\,z\,(7z^2-3r^2) 
234214π45/16(x2y2)(7z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/16}\,(x^2-y^2)(7z^2-r^2)See Ref 414π45/32(x+iy)2(7z2r2)\sqrt{\frac{1}{4\pi}}\sqrt{45/32}\,(x+iy)^2\,(7z^2-r^2) 
244314π315/8xz(x23y2)\sqrt{\frac{1}{4\pi}}\sqrt{315/8}\,xz(x^2-3y^2)See Ref 414π315/16(x+iy)3z-\sqrt{\frac{1}{4\pi}}\sqrt{315/16}\,(x+iy)^3z 
254414π315/64[x2(x23y2)y2(3x2y2)]\sqrt{\frac{1}{4\pi}}\sqrt{315/64}\,[x^2(x^2-3y^2)-y^2(3x^2-y^2)]14π315/128sin4θe4iϕ\sqrt{\frac{1}{4\pi}}\sqrt{315/128}\sin^4\theta e^{4i\phi}14π315/128(x+iy)4\sqrt{\frac{1}{4\pi}}\sqrt{315/128}\,(x+iy)^4 

The Υlm\Upsilon_{lm} and YlmY_{lm} are related as follows, using standard conventions(2), as in e.g. Jackson

Υl0(r^) Yl0(r^)(1)Υlm(r^)12[(1)mYlm(r^)+Yl,m(r^)](2)Υl,m(r^)12i[(1)mYlm(r^)Yl,m(r^)].(3) \begin{array}{rlrr} {\Upsilon_{l\,0}}(\hat{\mathbf{r}}) & \equiv \ Y_{l\,0}(\hat{\mathbf{r}}) & (1)\\ \Upsilon_{l\,m}(\hat{\mathbf{r}}) & \equiv \frac{1}{\sqrt 2}[(-1)^m{Y}_{l\,m}(\hat{\mathbf{r}}) + {Y}_{l,-m}(\hat{\mathbf{r}})] & (2) \\ \Upsilon_{l,-m}(\hat{\mathbf{r}}) &\equiv \frac{1}{\sqrt 2 i}[{( - 1)}^m{Y_{l\,m}}(\hat{\mathbf{r}}) - Y_{l,-m}(\hat{\mathbf{r}})]. & (3) \end{array}

where m>0m>0. The inverse operation is

Yl0(r^)Υl0(r^)(4)Ylm(r^)(1)m12[Υlm(r^)+iΥl,m(r^)](5)Yl,m(r^)12[Υlm(r^)iΥl,m(r^)].(6) \begin{array}{rlr} {Y}_{l\,0}(\hat {\mathbf{r}}) & \equiv {\Upsilon_{l0}}(\hat {\mathbf{r}}) & (4)\\ {Y}_{l\,m}(\hat {\mathbf{r}}) & \equiv (-1)^m\sqrt{\frac{1}{2}}\left[{\Upsilon_{l\,m}}(\hat {\mathbf{r}}) + i{\Upsilon_{l,-m}}(\hat {\mathbf{r}})\right] &(5)\\ {Y}_{l,-m}(\hat {\mathbf{r}}) & \equiv \sqrt{\frac{1}{2}}\left[\Upsilon_{l\,m}(\hat {\mathbf{r}}) - i{\Upsilon_{l,-m}}(\hat {\mathbf{r}})\right] . & (6) \end{array}

The mcx calculator can make these rotation matrices for you. For an example, see here.

Standard definition of spherical harmonics in terms of Legendre polynomials

The [standard definition](2) of Ylm(r^)Y_{l\,m}(\hat\mathbf{r}) is

Ylm(θ,ϕ)=[(2l+1)(lm)!4π(l+m)!]12Plm(cosθ)eimϕ,(7)Plm(x)=(1)m(1x2)m/22ll!dl+mdxl+m(x21)l(8) \begin{array}{rlr} Y_{l\,m}(\theta ,\phi ) & = \left[ \frac{(2l + 1)(l - m)!}{4\pi (l + m)!} \right]^{\frac{1}{2}} P_l^m(\cos\theta){e^{im\phi }}, & (7)\\ P_l^m(x) & = {(-1)^m} \frac{(1 - {x^2})^{m/2}}{2^ll!} \frac{d^{l + m}}{d{x^{l + m}}}{({x^2} - 1)^l} & (8) \end{array}

The (m)(-m) and mm functions are related by [see Jackson (3.51) and (3.53)] The factor (1)m(-1)^m is known as the Condon–Shortley phase, and some definitions omit it.

These functions satisfy the following relations

Plm(x)=(1)m(lm)!(l+m)!Plm(x)P_l^{-m}(x) = (-1)^m \frac{(l - m)!}{(l + m)!} P_l^m(x)   and   Yl,m(r^)=(1)mYlm(r^)Y_{l,-m}(\hat {\mathbf{r}}) = (-1)^m Y^{*}_{l\,m}(\hat {\mathbf{r}})

Matrix relations between linear combinations of real and spherical harmonics

Real and spherical harmonics combine states of +m+m and m-m differently. For a particular (+m,m)(+m,-m) pair, relations (1-6) for m>0m>0 can be expressed as a 2×2 matrix uu as

(YlmYlm)=(ΥlmΥlm)u1 where u1=u=12(ii(1)m1(1)m) and u=12(+i1i(1)m(1)m)(9) \begin{array}{rr} {(Y_{l - m}} & Y_{l\,m}) \end{array} = \begin{array}{rr} {(\Upsilon_{l - m}} & \Upsilon_{l\,m}) \end{array} u^{-1} \quad\text{ where }\quad u^{-1} = u^{\dag} = \frac{1}{\sqrt{2}} \left(\begin{array}{rr} {-i}&{i(-1)^m} \\ 1&(-1)^m \end{array} \right) \quad\text{ and }\quad u = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} +i & 1 \\ -i(-1)^m & (-1)^m \end{array} \right) \enspace (9)

Note that uu is unitary.

Rotations between linear combinations of spherical harmonics and real harmonics

Rotations mix only m-m and mm, so it is sufficient to consider only a pair of functions at a time, though the rotation uu used below does not make use of that fact.

Express a function f(r)f(\mathbf{r}) in both real spherical harmonics representations and compare:

f(r)=LcLRΥL=λcλYYλ=λcλYLΥLuLλ1(10a)f(\mathbf{r}) = \sum\nolimits_L {c_L^R{\Upsilon_L}} = \sum\nolimits_\lambda {c_\lambda ^Y{Y_\lambda } = } \sum\nolimits_\lambda {c_\lambda ^Y\sum\nolimits_L {\Upsilon_Lu_{L\lambda }^{-1}}} \qquad\qquad\qquad \qquad\qquad\qquad (10a)

Then

cLR=λuLλ1cλY  cλY=LuλLcLRorcY=ucRandcR=u1cY(10)c_L^R = \sum\nolimits_\lambda u_{L\lambda }^{-1} c_\lambda^Y {\text{ }} \Rightarrow {\text{ }} c_\lambda^Y = \sum\nolimits_L {u_{\lambda L}^{}c_L^R} \quad\text{or}\quad c^Y = u\,c^R \quad\text{and}\quad c^R = u^{-1} c^Y \qquad\qquad\qquad (10)

Eigenfunctions have the form Eq. (10a). Thus Eq. (10) gives the transformation of an eigenvector between real and spherical harmonics.

Structure Matrices

For definiteness, consider a matrix SS connecting functions at two points, e.g. a structure matrix expanding a function HH around another site,

HL(rR)=LJL(r)SLLH~L(rR)=LJ~L(r)S~LL \begin{array}{rr} H_L(\mathbf{r}-\mathbf{R}) =& \sum\nolimits_{L^\prime} J_{L^\prime}(\mathbf{r})\,S_{L^\prime L}\\ \tilde H_L(\mathbf{r}-\mathbf{R}) =& \sum\nolimits_{L^\prime} \tilde J_{L^\prime}(\mathbf{r})\,\tilde S_{L^\prime L} \end{array}

(HH,JJ) are in real harmonics; (H~\tilde H,J~\tilde J) are in spherical harmonics.

Consider the (m,+m)(-m,+m) segment of a vector of coefficients relating linear combinations of HH and JJ in real harmonics:

(ab)=(SS+S+S++)(ab) \left( \begin{array}{r} a^\prime \\ b^\prime \end{array} \right) = \left( \begin{array}{rr} S_{- -}& S_{-+} \\ S_{+-}&S_{++} \end{array}\right) \left( \begin{array}{r} a \\ b \end{array} \right)

For any point r, aa and bb correspond to a particular term in the first expression, Eq. (10a). Each term can be re-expressed in spherical harmonics through the rotation in the first expression, Eq. (10). The same argument applies to aa^\prime and bb^\prime. Thus the preceding relation expressed as coefficients to functions in spherical harmonics is:

u1(a~b~)=(SS+S+S++)u1(a~b~) {u^{-1}}\left(\begin{array}{r} \tilde a^\prime \\ \tilde b^\prime \end{array} \right) = \left( \begin{array}{rr} S_{- -}& S_{-+} \\ S_{+-}&S_{++} \end{array} \right){u^{ - 1}} \left(\begin{array}{r} \tilde a \\ \tilde b \end{array} \right)

This establishes that

S~=uSu1=uSu(11)\tilde S = u\,S\,u^{-1} = u\,S\,u^{\dagger} \qquad\qquad\qquad\qquad\qquad\qquad\qquad (11)

Gradients of Spherical harmonics

This section addresses the evaluation of the gradient operator acting on a function [f(r)YL]\nabla [f(r) Y_L].

Spherical components of a vector

It is convenient to define the “spherical components” of a vector r\mathbf{r} as (See Edmonds Sec 5.1)

r±=12(x±iy)and r0=zso thatx=12(r1r1);y=i2(r1+r1)andr2=2r+r+z2r_\pm = \mp \frac{1}{\sqrt{2}} (x \pm iy) \enspace\mathrm{and\ } r_0 = z \enspace\mathrm{so\ that}\quad x = \frac{1}{\sqrt{2}} (r_{-1} - r_{1}); \quad y = \frac{i}{\sqrt{2}} (r_{-1} + r_{1}) \enspace\mathrm{and}\enspace r^2 = -2r_+r_- + z^2

The two components r±r_\pm and (y,xy,x) are related by u¯\bar{u}, i.e. uu for odd mm:

(yx)=(r1r+1)12(i1i1)=(r1r+1)u¯(13) \left( \begin{array}{cc} y & x \end{array} \right) = \left( \begin{array}{cc} r_{-1} & r_{+1} \end{array} \right) \frac{1}{\sqrt{2}} \left(\begin{array}{rr} i & 1 \\ i & -1 \end{array} \right) = \left( \begin{array}{cc} r_{-1} & r_{+1} \end{array} \right) \bar{u} \quad (13)

The spherical components are convenient because the “solid spherical harmonics” YlmrlYlm\mathcal{Y}_{lm} \equiv r^l Y_{lm} are polynomials in the spherical components of r\mathbf{r}.
This is shown explicitly in the table above. In particular, Y1m=34πrm\mathcal{Y}_{1m} = \sqrt{\frac{3}{4\pi}}r_m.

Products of the Ylm\mathcal{Y}_{lm} can be expanded in linear combinations of them, using Clebsch Gordan or Gaunt coefficients or Wigner 3-j symbols, e.g.

Yl1m1(r)Yl2m2(r)=lm[(2l1+1)(2l2+1)4π(2l+1)]1/2(l1m1l2m2l1l2lm)×(l0l0lll0)rl1+l2lYlm(r)\mathcal{Y}_{l_1m_1}({\mathbf{r}}) \mathcal{Y}_{l_2m_2}({\mathbf{r}}) = \sum\limits_{lm} {\left[ \frac{(2{l_1} + 1)(2{l_2} + 1)}{4\pi (2l + 1)} \right]^{1/2} (l_1\,m_1\,l_2\,m_2\,|\,l_1\,l_2\,l\,m) \times (l\,0\,l\,0|l\,l\,l\,0)\,{r^{l_1+l_2-l}}{\mathcal{Y}_{lm}}({\mathbf{r}})}

Spherical components of Gradients of Spherical Harmonics

Since Y1m=34πrm\mathcal{Y}_{1m} = \sqrt{\frac{3}{4\pi}}r_m, the gradient can be written as 4π3Y1m()\sqrt{\frac{4\pi}{3}}\mathcal{Y}_{1m}(\nabla) and its action on some Y\mathcal{Y} can be evaluated as an “operator product” in terms of these expansion coefficients.

The gradient operator expressed in spherical harmonic components is then

1=12(yry+xrx)+1=12(yr+y+xr+x)so that(1+1)=(/y/x)12(ii11)=(/y/x)u¯T(13) \begin{array}{ll} \nabla_{-1} =& \frac{1}{\sqrt{2}}\left(\frac{\partial y}{\partial r_-} \frac{\partial}{\partial y} + \frac{\partial x}{\partial r_-}\frac{\partial}{\partial x} \right)\\ \nabla_{+1} =& \frac{1}{\sqrt{2}}\left(\frac{\partial y}{\partial r_+} \frac{\partial}{\partial y} + \frac{\partial x}{\partial r_+}\frac{\partial}{\partial x} \right) \end{array} \quad\mathrm{so\ that}\quad \left( \begin{array}{c} \nabla_{-1} & \nabla_{+1} \end{array} \right) = \left( \begin{array}{c} \partial/\partial y & \partial/\partial x \end{array} \right) \frac{1}{\sqrt{2}} \left(\begin{array}{rr} i & i \\ 1 & -1 \end{array} \right) = \left( \begin{array}{c} \partial/\partial y & \partial/\partial x \end{array} \right) \bar{u}^{T} \quad (13)

0\nabla_{0} can be written in spherical coordinates as

0=z=cosθrsinθrθ\nabla_{0} = \frac{\partial}{\partial z} = \cos\theta\frac{\partial}{\partial r} - \frac{\sin\theta}{r}\frac{\partial}{\partial\theta}

Expressing 0\nabla_{0} in spherical coordinates, and making use of properties of the Legendre polynomials, it is straightforward to show that

cosθYlm=l+1[(2l+1)(2l+3)]1/2Yl+1m+l[(2l1)(2l+1)]1/2Yl1msinθθYlm=l(l+1)[(2l+1)(2l+3)]1/2Yl+1ml(l1)[(2l1)(2l+1)]1/2Yl1m \begin{array}{ll} \cos\theta\, Y_{l\,m} &=& \frac{l+1}{[(2l+1)(2l+3)]^{1/2}} Y_{l+1\,m} + \frac{l}{[(2l-1)(2l+1)]^{1/2}} Y_{l-1\,m}\\ \sin\theta \frac{\partial}{\partial\theta}\, Y_{l\,m} &=& \frac{l(l+1)}{[(2l+1)(2l+3)]^{1/2}}Y_{l+1\,m} - \frac{l(l-1)}{[(2l-1)(2l+1)]^{1/2}} Y_{l-1\,m} \end{array}

which establishes that

0[f(r)Yl0]=l+1[(2l+1)(2l+3)]1/2(dfdrlrf)Yl+10+l[(2l1)(2l+1)]1/2(dfdr+l+1rf)Yl10\nabla_0 [f(r) Y_{l\,0}] = \frac{l+1}{[(2l+1)(2l+3)]^{1/2}} \left(\frac{df}{dr}-\frac{l}{r}f\right) Y_{l+1\,0} + \frac{l}{[(2l-1)(2l+1)]^{1/2}} \left(\frac{df}{dr}+\frac{l+1}{r}f\right) Y_{l-1\,0}

so that there are two nonzero matrix elements, (Yl±100f(r)Yl0)(Y_{l{\pm}1\,0} \vert \nabla_0 \vert f(r) Y_{l\,0}) of Yl0Y_{l\,0}.

The general matrix elements are (Edmonds, Section 5.7)

(Yl2m2mf(r)Yl1m1)=(1)m2(l21l1m2mm1)(l21l1000)(Yl200f(r)Yl10) (Y_{l_2\,m_2} | \nabla_m | f(r) Y_{l_1\,m_1}) = (-1)^{m_2} \frac{ \left( \begin{array}{ccc} l_2 & 1 & l_1\\ -m_2 & m & m_1 \end{array} \right) } { \left( \begin{array}{ccc} l_2 & 1 & l_1\\ 0 & 0 & 0 \end{array} \right) } (Y_{l_2\,0} | \nabla_0 | f(r) Y_{l_1\,0})

Looking up Wigner 3-j symbols, explicit forms of the matrix elements can be obtained:

(Yl+1m+mmf(r)Ylm)=(l+12l+3)1/2(lm1ml1l+1m+m)(frlrf)=(1)l+mAm+[2(2l+3)(2l+1)]1/2(frlrf) \begin{array}{r} (Y_{l+1\,m+m^\prime} | \nabla_{m^\prime} | f(r) Y_{l\,m}) &= \left(\frac{l+1}{2l+3}\right)^{1/2} (l\,m\,1\,m^\prime\,|\,l\,1\,l+1\,m+m^\prime) \left(\frac{\partial{f}}{\partial{r}}-\frac{l}{r}f\right)\\ &= (-1)^{l+m} \frac{A^+_{m^\prime}}{[2(2l+3)(2l+1)]^{1/2}} \left(\frac{\partial{f}}{\partial{r}}-\frac{l}{r}f\right) \qquad\qquad \end{array}

and

(Yl1m+mmf(r)Ylm)=(l2l1)1/2(lm1ml1l1m+m)(fr+l+1rf)=(1)l+mAm[2(2l+1)(2l1)]1/2(fr+l+1rf) \begin{array}{r} (Y_{l-1\,m+m^\prime} | \nabla_{m^\prime} | f(r) Y_{l\,m}) &= -\left(\frac{l}{2l-1}\right)^{1/2} (l\,m\,1\,m^\prime\,|\,l\,1\,l-1\,m+m^\prime) \left(\frac{\partial{f}}{\partial{r}}+\frac{l+1}{r}f\right)\\ &= (-1)^{l+m} \frac{A^-_{m^\prime}}{[2(2l+1)(2l-1)]^{1/2}} \left(\frac{\partial{f}}{\partial{r}}+\frac{l+1}{r}f\right) \qquad\qquad \end{array}

with

A1+=[(lm+1)(lm+2)]1/2A0+=[2(l+m+1)(lm+1)]1/2A1+=[(l+m+1)(l+m+2)]1/2A1=[(l+m1)(l+m)]1/2A0=[2(l+m)(lm)]1/2A1=[(lm1)(lm)]1/2 \begin{array}{ll} \begin{array}{l} A^+_{-1} &= {[(l-m+1)(l-m+2)]^{1/2}} \\ A^+_{0} &= -{[2(l+m+1)(l-m+1)]^{1/2}} \\ A^+_{1} &= {[(l+m+1)(l+m+2)]^{1/2}} \end{array} \qquad \begin{array}{l} A^-_{-1} &= {[(l+m-1)(l+m)]^{1/2}} \\ A^-_{0} &= {[2(l+m)(l-m)]^{1/2}} \\ A^-_{1} &= {[(l-m-1)(l-m)]^{1/2}} \end{array} \end{array}

Gradients in terms of Vector Spherical Harmonics

Gradients are sometimes expressed as in terms of “vector spherical harmonics” Ylml±1Y^{l{\pm}1}_{lm}, a special case of “tensorial spherical harmonics” which refer to products of two spherical harmonics.

[f(r)YL]=l+12l+1(frlrf)Ylml+1+l2l+1(fr+l+1rf)Ylml1(12a)or[f(r)YL]=l+12l+1(d(rf)dr(l+1)f)Ylml+1+l2l+1(d(rf)dr+lf)Ylml1(12b) \begin{array}{lll} \nabla [f(r) Y_L] &= -\sqrt{\frac{l+1}{2l+1}}\left(\frac{\partial{f}}{\partial{r}}-\frac{l}{r}f\right) Y^{l+1}_{lm} &+&\sqrt{\frac{l}{2l+1}}\left(\frac{\partial{f}}{\partial{r}}+\frac{l+1}{r}f\right) Y^{l-1}_{lm} \qquad (12a) \\ \mathrm{or}\\ \nabla [f(r) Y_L] &= -\sqrt{\frac{l+1}{2l+1}}\left(\frac{d(rf)}{dr}-(l+1)f\right) Y^{l+1}_{lm} &+&\sqrt{\frac{l}{2l+1}}\left(\frac{d(rf)}{dr}+l\,f\right) Y^{l-1}_{lm} \qquad (12b) \end{array}

As two special cases, f(r)=rlf(r)=r^l and f(r)=rl1f(r)=r^{-l-1}, note that the first or second term vanishes and the gradient becomes

[rlYL]=YL=l(2l+1)rl1Ylml1(14)[rl1YL]=(l+1)(2l+1)rl2Ylml+1(15) \begin{array}{llr} \nabla [r^l Y_L] = \nabla \mathcal{Y}_L =& \sqrt{l(2l+1)}\,r^{l-1}\,Y^{l-1}_{lm} &\quad (14) \\ \nabla [r^{-l-1} Y_L] =& \sqrt{(l+1)(2l+1)}\,r^{-l-2}\,Y^{l+1}_{lm} &\quad(15) \end{array}

Note that the gradient YL\nabla Y_L can be written

YL=l(l+1)(2l+1)1r(Ylml1+Ylml+1)=l+12l+1[rlYL]+l2l+1[rl1YL](16)\nabla Y_L = \sqrt{\frac{l(l+1)}{(2l+1)}}\,\frac{1}{r} \left(Y^{l-1}_{l\,m} + Y^{l+1}_{l\,m}\right) = \frac{l+1}{2l+1} \nabla [r^l Y_L] + \frac{l}{2l+1} \nabla [r^{-l-1} Y_L] \quad (16)

Rotations of functions of the gradient operator

We consider a pair linear combinations of spherical harmonics f±=yn±Ynf_\pm = y_{n\,\pm} Y_n derived from the ±\nabla_\pm operator acting on a single function. For clarity we switch to Greek indices when referring to Cartesian coordinates and Roman indices when referring to spherical harmonics. Using Eqs. (13) and (10)

fm=nymnYnfμ=mUμmfmwithU=uTand modd, using (13). Use (10):fμmUμmν[n(u1)νnymn]Υν.Thenfμ=νrμνΥνwithrμν=mnUμm(u1)νnymn \begin{array}{ll} f_m &= \sum_n y_{mn} Y_n\\ f_\mu &= \sum_m U_{\mu{m}} f_m \quad\mathrm{with}\enspace U = u^T \enspace\mathrm{and\ }m\enspace\mathrm{odd,\ using\ (13).\ Use\ (10):}\\ f_\mu &\equiv \sum_m U_{\mu{m}} \sum_\nu \left[\sum_n (u^{-1})_{\nu{n}} y_{mn}\right] \Upsilon_\nu . \quad\mathrm{Then}\\ f_\mu &= \sum_\nu r_{\mu\nu} \Upsilon_\nu \quad\mathrm{with}\\ r_{\mu\nu} &= \sum_{mn} U_{\mu{m}} (u^{-1})_{\nu{n}} y_{mn} \end{array}
fm=nYnynmfμ=mUμmfmwithU=uTand modd, using (13). Use (10):fμmUμmνΥν[n(u1)νnynm].Thenfμ=νΥνrνμwithrνμ=mn(u1)νnynmumμ(1). \begin{array}{ll} f_m &= \sum_n Y_n y_{nm}\\ f_\mu &= \sum_m U_{\mu{m}} f_m \quad\mathrm{with}\enspace U = u^T \enspace\mathrm{and\ }m\enspace\mathrm{odd,\ using\ (13).\ Use\ (10):}\\ f_\mu &\equiv \sum_m U_{\mu{m}} \sum_\nu \Upsilon_\nu \left[\sum_n (u^{-1})_{\nu{n}} y_{nm}\right] . \quad\mathrm{Then}\\ f_\mu &= \sum_\nu \Upsilon_\nu r_{\nu\mu} \quad\mathrm{with}\\ r_{\nu\mu} &= \sum_{mn} (u^{-1})_{\nu{n}} y_{nm} u^{(1)}_{m\mu}. \end{array}

References

See
(1) Jackson, Electrodynamics.
(2) A.R.Edmonds, Angular Momentum in quantum Mechanics, Princeton University Press, 1960.
(3) M.E.Rose, Elementary Theory of angular Momentum, John Wiley & Sons, 1957.
(4) Wikipedia’s page on spherical harmonics

Footnotes

(1) For example,

15/(4π)x2/r2=5/3Υ001/3Υ20+Υ2215/(4π)y2/r2=5/3Υ001/3Υ20Υ2215/(4π)z2/r2=5/3Υ00+4/3Υ20 \begin{array}{llll} \sqrt{15/(4\pi)}\,x^2/r^2 &=& \sqrt{5/3} \Upsilon_{00} &- &\sqrt{1/3} \Upsilon_{20} + \Upsilon_{22}\\ \sqrt{15/(4\pi)}\,y^2/r^2 &=& \sqrt{5/3} \Upsilon_{00} &- &\sqrt{1/3} \Upsilon_{20} - \Upsilon_{22}\\ \sqrt{15/(4\pi)}\,z^2/r^2 &=& \sqrt{5/3} \Upsilon_{00} &+ &\sqrt{4/3} \Upsilon_{20} \end{array}

(2) Definitions (7) and (8) of spherical harmonics are the same as in Jackson. Jackson’s definition differs from that of Edmonds and Rose, by a phase factor (1)m(-1)^m. This phase is sometimes referred to as the “Condon–Shortley phase.” Wikipedia follows Jackson’s convention for PlmP_l^m. Some authors, e.g. Abramowitz and Stegun omit the Condon–Shortley phase.

Wikipedia also refers to Jackson’s definition as the “standard definition,” and refers to the definition which omits the Condon–Shortley phase in both the PlmP_l^{m} and the YlmY_{l\,m} as a “quantum mechanics” defnition of spherical harmonics, since some texts in quantum mechanics (e.g. Messiah) use that convention. Since the phase is omitted in both places, “standard” and “quantum mechanics” definitions are identical for the YlmY_{l\,m} , but differ by the Condon–Shortley phase for the PlmP_l^{m}.

This is apparently also the definition K. Haule uses in his CTQMC code. However, his code may scale some mm by ii.